Multiple Neural Control Strategies Using a Neuro-Fuzzy Classifier
- Авторы: Dehmani K.1, Fourati F.2, Elleuch K.1, Toumi A.1
-
Учреждения:
- Laboratory Lab-STA
- Control and Energy Management Laboratory (CEM-Lab)
- Выпуск: Том 52, № 3 (2018)
- Страницы: 155-165
- Раздел: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175479
- DOI: https://doi.org/10.3103/S0146411618030069
- ID: 175479
Цитировать
Аннотация
The paper deals with the control of complex dynamic systems. The main objective is to partition the whole operational system domain in local regions using an incremental neuro-fuzzy classifier in order to achieve multiple neural control strategies for the considered system. In our case, this approach is applied to a greenhouse operating during one day. Therefore, banks of neural controllers and direct neural local models are made from different partitioned greenhouse behaviors and two multiple neural control strategies are proposed to control the greenhouse. The selection of the suitable controller is accomplished by computing the minimal output error between desired and direct neural local models outputs in the case of the first control strategy and from a supervisor block containing the considered neuro-fuzzy classifier in the case of the second control strategy. Simulation results are then carried out to show the efficiency of the two control strategies.
Об авторах
Khaled Dehmani
Laboratory Lab-STA
Email: Fethi.Fourati@ipeis.rnu.tn
Тунис, Sfax
Fathi Fourati
Control and Energy Management Laboratory (CEM-Lab)
Автор, ответственный за переписку.
Email: Fethi.Fourati@ipeis.rnu.tn
Тунис, Sfax
Khaled Elleuch
Laboratory Lab-STA
Email: Fethi.Fourati@ipeis.rnu.tn
Тунис, Sfax
Ahmed Toumi
Laboratory Lab-STA
Email: Fethi.Fourati@ipeis.rnu.tn
Тунис, Sfax
Дополнительные файлы
