Self-optimization of Handover Control Parameters for Mobility Management in 4G/5G Heterogeneous Networks


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A large number of small cells in the next-generation mobile networks is expected to be deployed to satisfy 5G requirements. Mobility management is one of the important issues that require considerable attention in heterogeneous networks, where 5G ultra-dense small cells coexist with the current 4G networks. An efficient handover (HO) mechanism is introduced to address this issue and improve mobility management by adjusting HO control parameters (HCPs), namely, time-to-trigger and HO margin. Dynamic HCPs (D-HCPs), which explores user experiences to adjust HCPs and make an HO decision in a self-optimizing manner, is proposed in this paper. D-HCPs classify HO failure (HOF) into three categories, namely, too late, too early and wrong cell HO, and simultaneously adjust HCPs according to the dominant HOF. The algorithm is evaluated using different performance metrics, such as HO ping-pong, radio link failure and interruption time, with different mobile speed scenarios. Simulation results show that the proposed D-HCPs algorithm adaptively optimizes the HCPs and outperforms other algorithms from the literature.

Ключевые слова

Об авторах

A. Abdulraqeb

Center for Wireless and Technology, Multimedia University

Автор, ответственный за переписку.
Email: abdulraqeb.alhammadi@gmail.com
Малайзия, Cyberjaya, Selangor, 63100

R. Mardeni

Center for Wireless and Technology, Multimedia University

Email: abdulraqeb.alhammadi@gmail.com
Малайзия, Cyberjaya, Selangor, 63100

A. Yusoff

Center for Wireless and Technology, Multimedia University

Email: abdulraqeb.alhammadi@gmail.com
Малайзия, Cyberjaya, Selangor, 63100

S. Ibraheem

Electronics and Communication Engineering Department, Istanbul Technical University

Email: abdulraqeb.alhammadi@gmail.com
Турция, Istanbul, 34467

A. Saddam

National University of Malaysia

Email: abdulraqeb.alhammadi@gmail.com
Малайзия, Bangi, Selangor, 43600

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».