Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 53, № 5 (2019)

Article

Approach to Presenting Network Infrastructure of Cyberphysical Systems to Minimize the Cyberattack Neutralization Time

Lavrova D., Zaitseva E., Zegzhda D.

Аннотация

This article proposes an approach to presenting the network infrastructure of cyberphysical systems to provide a more rapid identification of a suitable variant to rearranging the route on a graph that characterizes the target function. The proposed approach minimizes the number of used devices and allows neutralizing earlier detected cyberattacks against the system.

Automatic Control and Computer Sciences. 2019;53(5):387-392
pages 387-392 views

Autopilot Design for an Autonomous Sailboat Based on Sliding Mode Control

Helmi Abrougui ., Dallagi H., Nejim S.

Аннотация

This paper deals with the design of an autopilot based on sliding mode control combined with feedback linearization method for an autonomous sailing vessel. This autopilot is developed using a model with four degrees of freedom, which represents the dynamic of a sailboat. Due to the high nonlinearity of the developed dynamic model, heading and sail opening angle controller were developed to steer the sailboat toward a specific target position. The nonlinear four degrees of freedom dynamic model for the sailing vessel is first described. Then, an autopilot is designed using both sliding mode control and feedback linearization method. Finally, some simulations are carried out to illustrate the behavior of the overall system.

Automatic Control and Computer Sciences. 2019;53(5):393-407
pages 393-407 views

Parameter Identification of Induction Motor by Using Cooperative-Coevolution and a Nonlinear Estimator

Alireza Rezaee ., Mehdi Hoseini S.

Аннотация

Induction motors are one of the critical industrial drivers due to its simplicity, inexpensiveness, and high resistance. Such motors have a nonlinear model divided into two electrical and mechanical equations in terms of modeling. Knowing the values of electric parameters and mechanical moment of inertia is critically important for speed controlling and induction motors’ position. In many algorithms, electric parameters can be obtained by the locked rotor and unloaded tests, conducting these methods in laboratory would probably cost a lot of time and money. In this paper electrical parameters and moment of inertia are used approximately, without doing the above test by currents, voltages, and motor speed sampling in motor normal operation. This paper applies cooperative co-evolution method to remove certain costly tests that are required for induction motors. Two identification algorithms are suggested for all electrical parameters and moment of inertia. All inductances and resistances which are the two input parameters measured in electric equations using Cooperative-Coevolution algorithm. Mechanical model estimated the moment of inertia and load torque by using a nonlinear method based on Lyapunov. Computerized numerical simulations show that electric parameters, moment of inertia, and load torque were properly estimated by integrating the two smart and classic methods. The results show that the stator inductance error is about 1% and rotor inductance error is around 20%. Rotor and stator resistance error and self-Inductance is also less than one percent.

Automatic Control and Computer Sciences. 2019;53(5):408-418
pages 408-418 views

Detecting DDoS Attacks Using Machine Learning Techniques and Contemporary Intrusion Detection Dataset

Naveen Bindra ., Manu Sood .

Аннотация

Recent trends have revealed that DDoS attacks contribute to the majority of overall network attacks. Networks face challenges in distinguishing between legitimate and malicious flows. The testing and implementation of DDoS strategies are not easy to deploy due to many factors like complexities, rigidity, cost, and vendor specific architecture of current networking equipment and protocols. Work is being done to detect DDoS attacks by application of Machine Learning (ML) models but to find out the best ML model among the given choices, is still an open question. This work is motivated by two research questions: 1) which supervised learning algorithm will give the best outcomes to detect DDoS attacks. 2) What would be the accuracy of training these algorithms on a real-life dataset? We achieved more than 96% accuracy in the case of Random Forest Classifier and validated our results using two metrics. The outcome was also compared with the other works to confirm its adequacy. We also present a detailed analysis to support our findings.

Automatic Control and Computer Sciences. 2019;53(5):419-428
pages 419-428 views

Coverage-All Targets Algorithm for 3D Wireless Multimedia Sensor Networks Based on the Gravitational Search Algorithm

Yanjiao Wang ., Ye Chen .

Аннотация

Aiming at the actual targets coverage scene of targets and sensors in the three-dimensional physical world, in order to use the minimal sensors to cover all the targets, a new coverage-all targets algorithm based on Gravitational Search algorithm (GSA-CT) is proposed. Firstly, from the practical point of view, a 3D coverage-all targets model of WMSNs which based on the spatial position relationship of sensors and targets is established in three-dimensional space. Secondly, in order to avoid randomness of the current order method to determine the minimal number of sensors to cover all the targets, a new fitness calculation method has been proposed. Thirdly, in order to improve solution accuracy, GSA is used as the optimization method of coverage-all targets method. Experimental results show that compared with the other 7 coverage methods for the 9 actual coverage scenarios, the number of sensors required for GSA-CT proposed in this paper is the least, and the method is very stable.

Automatic Control and Computer Sciences. 2019;53(5):429-440
pages 429-440 views

Self-optimization of Handover Control Parameters for Mobility Management in 4G/5G Heterogeneous Networks

Abdulraqeb A., Mardeni R., Yusoff A., Ibraheem S., Saddam A.

Аннотация

A large number of small cells in the next-generation mobile networks is expected to be deployed to satisfy 5G requirements. Mobility management is one of the important issues that require considerable attention in heterogeneous networks, where 5G ultra-dense small cells coexist with the current 4G networks. An efficient handover (HO) mechanism is introduced to address this issue and improve mobility management by adjusting HO control parameters (HCPs), namely, time-to-trigger and HO margin. Dynamic HCPs (D-HCPs), which explores user experiences to adjust HCPs and make an HO decision in a self-optimizing manner, is proposed in this paper. D-HCPs classify HO failure (HOF) into three categories, namely, too late, too early and wrong cell HO, and simultaneously adjust HCPs according to the dominant HOF. The algorithm is evaluated using different performance metrics, such as HO ping-pong, radio link failure and interruption time, with different mobile speed scenarios. Simulation results show that the proposed D-HCPs algorithm adaptively optimizes the HCPs and outperforms other algorithms from the literature.

Automatic Control and Computer Sciences. 2019;53(5):441-451
pages 441-451 views

ELM_Kernel and Wavelet Packet Decomposition Based EEG Classification Algorithm

Li Wang ., Lan Z., Wang Q., Yang R., Li H.

Аннотация

Rehabilitation technology based on brain-computer interface (BCI) has become a promising approach for patients with dyskinesia to regain movement. In this paper, a novel classification algorithm is proposed based on the characteristic of electroencephalogram (EEG) signals. Specifically wavelet packet decomposition (WPD) and Extreme learning machine with kernel (ELM_Kernel) algorithm are studied. In view of the existence of cross-banding of WPD, the average energy of the wavelet packets of the corresponding frequency bands which belong to the mu and beta rhythm are used to form the feature vectors that are classified by the ELM_Kernel algorithm. Simulation results demonstrate that the proposed algorithm produces a high probability of correct classification of 97.8% and outperforms state-of-the-art algorithms such as ELM, BP and SVM in terms of both training time and classification accuracy.

Automatic Control and Computer Sciences. 2019;53(5):452-460
pages 452-460 views

MAD-based Estimation of the Noise Level in the Contourlet Domain

Abdelhak Bouhali ., Daoud Berkani .

Аннотация

Noise-level estimation remains one of the most critical issues related to the contourlet-based approaches. In this paper, an investigation of an effective solution is directed from any redundant contourlet expansion. This is going to be addressed for the first time in that domain. In this proposition, the noise level is estimated as the median absolute value (MAD) of the finest multi-scale coefficients, calibrated by three correction parameters. This is done according to some visual classification of the natural images. The present estimator provides a better compromise between the image and the contourlet expansion nature, which makes the estimation results more accurate for a wide range of natural images, when compared to the best state-of-the-art methods. Therefore, it is extensively recommended for most of the contourlet-based image applications (Thresholding, filtering, etc.) thanks to its accuracy, simplicity, and rapidity.

Automatic Control and Computer Sciences. 2019;53(5):461-470
pages 461-470 views

A Novel Fast Partition Algorithm Based on EDGE Information in HEVC

Zhi Liu ., Zhang M., Lai D., An C.

Аннотация

High efficiency video coding (HEVC) introduces a well-designed quad-tree structure to improve coding efficiency. During quad-tree building, the encoder tries all possible coding unit (CU) partition schemes to determine the optimal one with the minimum rate distortion cost, which introduces high computation complexity. To deal with this problem, a fast algorithm based on edge information is proposed to accelerate CU splitting in this paper. Firstly, the depth and prediction mode of adjacent blocks are obtained and used to facilitate rough partition. Secondly, the edge pixel values of this CU are counted and analyzed to fine-tune the partition. Experimental results show that the proposed algorithm can reduce coding time by 35.7% on average, with an acceptable loss of Bjøntegaard delta rate of 0.6%.

Automatic Control and Computer Sciences. 2019;53(5):471-479
pages 471-479 views

Erratum

Erratum to: Estimating the Speed of an Integrated Wireless Network for Transportation Applications

Bogdanov N., Ancans A., Martinsons K., Petersons E.

Аннотация

erratum

Automatic Control and Computer Sciences. 2019;53(5):480-480
pages 480-480 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».