Expansion of Self-Similar Functions in the Faber–Schauder System
- Авторы: Timofeev E.A.1
-
Учреждения:
- Demidov Yaroslavl State University
- Выпуск: Том 51, № 7 (2017)
- Страницы: 586-591
- Раздел: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175243
- DOI: https://doi.org/10.3103/S014641161707032X
- ID: 175243
Цитировать
Аннотация
Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, y)Σk=1∞|xk − yk|2−k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 − x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x < 0 or x > 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2nr − j), j = 0,1,…, 2n − 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.
Ключевые слова
Об авторах
E. Timofeev
Demidov Yaroslavl State University
Автор, ответственный за переписку.
Email: timofeevEA@gmail.com
Россия, Yaroslavl, 150003
Дополнительные файлы
