Expansion of Self-Similar Functions in the Faber–Schauder System
- Autores: Timofeev E.A.1
-
Afiliações:
- Demidov Yaroslavl State University
- Edição: Volume 51, Nº 7 (2017)
- Páginas: 586-591
- Seção: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175243
- DOI: https://doi.org/10.3103/S014641161707032X
- ID: 175243
Citar
Resumo
Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, y)Σk=1∞|xk − yk|2−k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 − x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x < 0 or x > 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2nr − j), j = 0,1,…, 2n − 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.
Palavras-chave
Sobre autores
E. Timofeev
Demidov Yaroslavl State University
Autor responsável pela correspondência
Email: timofeevEA@gmail.com
Rússia, Yaroslavl, 150003
Arquivos suplementares
