On the Support Splitting Algorithm for Induced Codes


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

As shown by N. Sendrier in 2000, if a \([n{\text{,}}\,k{\text{,}}\,d]\)-linear code \(C( \subseteq \mathbb{F}_{q}^{n})\) with length \(n\), dimensionality \(k\) and code distance \(d\) has a trivial group of automorphisms \({\text{PAut}}(C)\), it allows one to construct a determined support splitting algorithm in order to find a permutation \(\sigma \) for a code \(D\), being permutation-equivalent to the code \(C\), such that \(\sigma (C) = D\). This algorithm can be used for attacking the McEliece cryptosystem based on the code\(C\). This work aims the construction and analysis of the support splitting algorithm for the code \(\mathbb{F}_{q}^{l} \otimes C\), induced by the code \(C\), \(l \in \mathbb{N}\). Since the group of automorphisms PAut\((\mathbb{F}_{q}^{l} \otimes C)\) is nontrivial even in the case of that trivial for the base code \(C\), it enables one to assume a potentially high resistance of the McEliece cryptosystem on the code \(\mathbb{F}_{q}^{l} \otimes C\) to the attack based on a carrier split. The support splitting algorithm is being constructed for the code \(\mathbb{F}_{q}^{l} \otimes C\) and its efficiency is compared with the attack to a McEliece cryptosystem based on the code \(\mathbb{F}_{q}^{l} \otimes C.\)

Авторлар туралы

Yu. Kosolapov

Southern Federal University

Хат алмасуға жауапты Автор.
Email: itaim@mail.ru
Ресей, Rostov-on-Don, 344016

A. Shigaev

Southern Federal University

Хат алмасуға жауапты Автор.
Email: aleksejshig@gmail.com
Ресей, Rostov-on-Don, 344016

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019