On the Support Splitting Algorithm for Induced Codes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

As shown by N. Sendrier in 2000, if a \([n{\text{,}}\,k{\text{,}}\,d]\)-linear code \(C( \subseteq \mathbb{F}_{q}^{n})\) with length \(n\), dimensionality \(k\) and code distance \(d\) has a trivial group of automorphisms \({\text{PAut}}(C)\), it allows one to construct a determined support splitting algorithm in order to find a permutation \(\sigma \) for a code \(D\), being permutation-equivalent to the code \(C\), such that \(\sigma (C) = D\). This algorithm can be used for attacking the McEliece cryptosystem based on the code\(C\). This work aims the construction and analysis of the support splitting algorithm for the code \(\mathbb{F}_{q}^{l} \otimes C\), induced by the code \(C\), \(l \in \mathbb{N}\). Since the group of automorphisms PAut\((\mathbb{F}_{q}^{l} \otimes C)\) is nontrivial even in the case of that trivial for the base code \(C\), it enables one to assume a potentially high resistance of the McEliece cryptosystem on the code \(\mathbb{F}_{q}^{l} \otimes C\) to the attack based on a carrier split. The support splitting algorithm is being constructed for the code \(\mathbb{F}_{q}^{l} \otimes C\) and its efficiency is compared with the attack to a McEliece cryptosystem based on the code \(\mathbb{F}_{q}^{l} \otimes C.\)

About the authors

Yu. V. Kosolapov

Southern Federal University

Author for correspondence.
Email: itaim@mail.ru
Russian Federation, Rostov-on-Don, 344016

A. N. Shigaev

Southern Federal University

Author for correspondence.
Email: aleksejshig@gmail.com
Russian Federation, Rostov-on-Don, 344016

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Allerton Press, Inc.