1-Skeletons of the Spanning Tree Problems with Additional Constraints


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the polyhedral properties of two spanning tree problems with additional constraints. In the first problem, it is required to find a tree with a minimum sum of edge weights among all spanning trees with the number of leaves less or equal a given value. In the second problem, an additional constraint is the assumption that the degree of all vertices of the spanning tree does not exceed a given value. The decision versions of both problems are NP-complete. We consider the polytopes of these problems and their 1-skeletons. We prove that in both cases it is a NP-complete problem to determine whether the vertices of 1-skeleton are adjacent. Although it is possible to obtain a superpolynomial lower bounds on the clique numbers of these graphs. These values characterize the time complexity in a broad class of algorithms based on linear comparisons. The results indicate a fundamental difference in combinatorial and geometric properties between the considered problems and the classical minimum spanning tree problem.

Авторлар туралы

V. Bondarenko

Yaroslavl State University

Хат алмасуға жауапты Автор.
Email: bond@bond.edu.yar.ru
Ресей, Yaroslavl, 150003

A. Nikolaev

Yaroslavl State University

Email: bond@bond.edu.yar.ru
Ресей, Yaroslavl, 150003

D. Shovgenov

Yaroslavl State University

Email: bond@bond.edu.yar.ru
Ресей, Yaroslavl, 150003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2017