1-Skeletons of the Spanning Tree Problems with Additional Constraints


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the polyhedral properties of two spanning tree problems with additional constraints. In the first problem, it is required to find a tree with a minimum sum of edge weights among all spanning trees with the number of leaves less or equal a given value. In the second problem, an additional constraint is the assumption that the degree of all vertices of the spanning tree does not exceed a given value. The decision versions of both problems are NP-complete. We consider the polytopes of these problems and their 1-skeletons. We prove that in both cases it is a NP-complete problem to determine whether the vertices of 1-skeleton are adjacent. Although it is possible to obtain a superpolynomial lower bounds on the clique numbers of these graphs. These values characterize the time complexity in a broad class of algorithms based on linear comparisons. The results indicate a fundamental difference in combinatorial and geometric properties between the considered problems and the classical minimum spanning tree problem.

Об авторах

V. Bondarenko

Yaroslavl State University

Автор, ответственный за переписку.
Email: bond@bond.edu.yar.ru
Россия, Yaroslavl, 150003

A. Nikolaev

Yaroslavl State University

Email: bond@bond.edu.yar.ru
Россия, Yaroslavl, 150003

D. Shovgenov

Yaroslavl State University

Email: bond@bond.edu.yar.ru
Россия, Yaroslavl, 150003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).