Detecting DDoS Attacks Using Machine Learning Techniques and Contemporary Intrusion Detection Dataset
- 作者: Naveen Bindra 1, Manu Sood 1
-
隶属关系:
- Department of Computer Science (HPU)
- 期: 卷 53, 编号 5 (2019)
- 页面: 419-428
- 栏目: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175858
- DOI: https://doi.org/10.3103/S0146411619050043
- ID: 175858
如何引用文章
详细
Recent trends have revealed that DDoS attacks contribute to the majority of overall network attacks. Networks face challenges in distinguishing between legitimate and malicious flows. The testing and implementation of DDoS strategies are not easy to deploy due to many factors like complexities, rigidity, cost, and vendor specific architecture of current networking equipment and protocols. Work is being done to detect DDoS attacks by application of Machine Learning (ML) models but to find out the best ML model among the given choices, is still an open question. This work is motivated by two research questions: 1) which supervised learning algorithm will give the best outcomes to detect DDoS attacks. 2) What would be the accuracy of training these algorithms on a real-life dataset? We achieved more than 96% accuracy in the case of Random Forest Classifier and validated our results using two metrics. The outcome was also compared with the other works to confirm its adequacy. We also present a detailed analysis to support our findings.
作者简介
Naveen Bindra
Department of Computer Science (HPU)
编辑信件的主要联系方式.
Email: naveenjb@hotmail.com
印度, Shimla
Manu Sood
Department of Computer Science (HPU)
编辑信件的主要联系方式.
Email: soodm_67@yahoo.com
印度, Shimla
补充文件
