Using Neural Networks to Detect Internal Intruders in VANETs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This article considers ensuring protection of Vehicular Ad-Hoc Networks (VANET) against malicious nodes. Characteristic performance features of VANETs and threats are analyzed, and current attacks identified. The proposed approach to security provision relies on radial basis neural networks and makes it possible to identify malicious nodes by indicators of behavior.

作者简介

T. Ovasapyan

Peter the Great St.Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: otd@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251

D. Moskvin

Peter the Great St.Petersburg Polytechnic University

Email: max@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251

M. Kalinin

Peter the Great St.Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: max@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018