Using Neural Networks to Detect Internal Intruders in VANETs
- Autores: Ovasapyan T.D.1, Moskvin D.A.1, Kalinin M.O.1
-
Afiliações:
- Peter the Great St.Petersburg Polytechnic University
- Edição: Volume 52, Nº 8 (2018)
- Páginas: 954-958
- Seção: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175682
- DOI: https://doi.org/10.3103/S0146411618080199
- ID: 175682
Citar
Resumo
This article considers ensuring protection of Vehicular Ad-Hoc Networks (VANET) against malicious nodes. Characteristic performance features of VANETs and threats are analyzed, and current attacks identified. The proposed approach to security provision relies on radial basis neural networks and makes it possible to identify malicious nodes by indicators of behavior.
Palavras-chave
Sobre autores
T. Ovasapyan
Peter the Great St.Petersburg Polytechnic University
Autor responsável pela correspondência
Email: otd@ibks.spbstu.ru
Rússia, St. Petersburg, 195251
D. Moskvin
Peter the Great St.Petersburg Polytechnic University
Email: max@ibks.spbstu.ru
Rússia, St. Petersburg, 195251
M. Kalinin
Peter the Great St.Petersburg Polytechnic University
Autor responsável pela correspondência
Email: max@ibks.spbstu.ru
Rússia, St. Petersburg, 195251
Arquivos suplementares
