On Optimal Interpolation by Linear Functions on n-Dimensional Cube


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let \(n \in N\), and let \({{Q}_{n}}\) be the unit cube \({{[0,1]}^{n}}\). By \(C({{Q}_{n}})\) we denote the space of continuous functions \(f:{{Q}_{n}} \to R\) with the norm \({{\left\| f \right\|}_{{C({{Q}_{n}})}}}: = \mathop {max}\limits_{x \in {{Q}_{n}}} \left| {f(x)} \right|,\) by \({{\Pi }_{1}}\left( {{{R}^{n}}} \right)\) – the set of polynomials of \(n\) variables of degree \( \leqslant 1\) (or linear functions). Let \({{x}^{{(j)}}},\)\(1 \leqslant j \leqslant n + 1,\) be the vertices of an \(n\)-dimnsional nondegenerate simplex \(S \subset {{Q}_{n}}\). The interpolation projector \(P:C({{Q}_{n}}) \to {{\Pi }_{1}}({{R}^{n}})\) corresponding to the simplex \(S\) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{(j)}}}} \right).\) The norm of \(P\) as an operator from \(C({{Q}_{n}})\) to \(C({{Q}_{n}})\) can be calculated by the formula \(\left\| P \right\| = \mathop {max}\limits_{x \in {\text{ver}}({{Q}_{n}})} \sum\nolimits_{j = 1}^{n + 1} {\left| {{{\lambda }_{j}}(x)} \right|} .\) Here \({{\lambda }_{j}}\) are the basic Lagrange polynomials with respect to \(S,\)\({\text{ver}}({{Q}_{n}})\) is the set of vertices of \({{Q}_{n}}\). Let us denote by \({{\theta }_{n}}\) the minimal possible value of \(\left\| P \right\|.\) Earlier the first author proved various relations and estimates for values \(\left\| P \right\|\) and \({{\theta }_{n}}\), in particular, having geometric character. The equivalence \({{\theta }_{n}} \asymp \sqrt n \) takes place. For example, the appropriate according to dimension \(n\) inequalities can be written in the form \(\tfrac{1}{4}\sqrt n \)\( < {{\theta }_{n}}\)\( < 3\sqrt n .\) If the nodes of a projector \(P{\text{*}}\) coincide with vertices of an arbitrary simplex with maximum possible volume, then we have \(\left\| {P{\text{*}}} \right\| \asymp {{\theta }_{n}}.\) When an Hadamard matrix of order \(n + 1\) exists, holds \({{\theta }_{n}} \leqslant \sqrt {n + 1} .\) In the present paper, we give more precise upper bounds of \({{\theta }_{n}}\) for \(21 \leqslant n \leqslant 26\). These estimates were obtained with application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements \( \pm 1.\) Also we systematize and comment the best nowaday upper and low estimates of \({{\theta }_{n}}\) for concrete \(n.\)

作者简介

M. Nevskii

Demidov Yaroslavl State University

编辑信件的主要联系方式.
Email: mnevsk55@yandex.ru
俄罗斯联邦, Yaroslavl, 150003

A. Ukhalov

Demidov Yaroslavl State University

编辑信件的主要联系方式.
Email: alex-uhalov@yandex.ru
俄罗斯联邦, Yaroslavl, 150003

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018