On Optimal Interpolation by Linear Functions on n-Dimensional Cube


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let \(n \in N\), and let \({{Q}_{n}}\) be the unit cube \({{[0,1]}^{n}}\). By \(C({{Q}_{n}})\) we denote the space of continuous functions \(f:{{Q}_{n}} \to R\) with the norm \({{\left\| f \right\|}_{{C({{Q}_{n}})}}}: = \mathop {max}\limits_{x \in {{Q}_{n}}} \left| {f(x)} \right|,\) by \({{\Pi }_{1}}\left( {{{R}^{n}}} \right)\) – the set of polynomials of \(n\) variables of degree \( \leqslant 1\) (or linear functions). Let \({{x}^{{(j)}}},\)\(1 \leqslant j \leqslant n + 1,\) be the vertices of an \(n\)-dimnsional nondegenerate simplex \(S \subset {{Q}_{n}}\). The interpolation projector \(P:C({{Q}_{n}}) \to {{\Pi }_{1}}({{R}^{n}})\) corresponding to the simplex \(S\) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{(j)}}}} \right).\) The norm of \(P\) as an operator from \(C({{Q}_{n}})\) to \(C({{Q}_{n}})\) can be calculated by the formula \(\left\| P \right\| = \mathop {max}\limits_{x \in {\text{ver}}({{Q}_{n}})} \sum\nolimits_{j = 1}^{n + 1} {\left| {{{\lambda }_{j}}(x)} \right|} .\) Here \({{\lambda }_{j}}\) are the basic Lagrange polynomials with respect to \(S,\)\({\text{ver}}({{Q}_{n}})\) is the set of vertices of \({{Q}_{n}}\). Let us denote by \({{\theta }_{n}}\) the minimal possible value of \(\left\| P \right\|.\) Earlier the first author proved various relations and estimates for values \(\left\| P \right\|\) and \({{\theta }_{n}}\), in particular, having geometric character. The equivalence \({{\theta }_{n}} \asymp \sqrt n \) takes place. For example, the appropriate according to dimension \(n\) inequalities can be written in the form \(\tfrac{1}{4}\sqrt n \)\( < {{\theta }_{n}}\)\( < 3\sqrt n .\) If the nodes of a projector \(P{\text{*}}\) coincide with vertices of an arbitrary simplex with maximum possible volume, then we have \(\left\| {P{\text{*}}} \right\| \asymp {{\theta }_{n}}.\) When an Hadamard matrix of order \(n + 1\) exists, holds \({{\theta }_{n}} \leqslant \sqrt {n + 1} .\) In the present paper, we give more precise upper bounds of \({{\theta }_{n}}\) for \(21 \leqslant n \leqslant 26\). These estimates were obtained with application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements \( \pm 1.\) Also we systematize and comment the best nowaday upper and low estimates of \({{\theta }_{n}}\) for concrete \(n.\)

Об авторах

M. Nevskii

Demidov Yaroslavl State University

Автор, ответственный за переписку.
Email: mnevsk55@yandex.ru
Россия, Yaroslavl, 150003

A. Ukhalov

Demidov Yaroslavl State University

Автор, ответственный за переписку.
Email: alex-uhalov@yandex.ru
Россия, Yaroslavl, 150003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2018

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».