Asymptotic Formula for the Moments of the Takagi Function
- Авторлар: Timofeev E.A.1
-
Мекемелер:
- Demidov Yaroslavl State University
- Шығарылым: Том 51, № 7 (2017)
- Беттер: 731-735
- Бөлім: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175380
- DOI: https://doi.org/10.3103/S0146411617070197
- ID: 175380
Дәйексөз келтіру
Аннотация
The Takagi function is a simple example of a continuous yet nowhere differentiable function and is given as T(x) = Σk=0∞ 2−n ρ(2nx), where \(\rho (x) = \mathop {\min }\limits_{k \in \mathbb{Z}} |x - k|\). The moments of the Takagi function are given as Mn = ∫01xnT(x)dx. The estimate \({M_n} = \frac{{1nn - \Gamma '(1) - 1n\pi }}{{{n^2}1n2}} + \frac{1}{{2{n^2}}} + \frac{2}{{{n^2}1n2}}\phi (n) + O({n^{ - 2.99}})\), where the function \(\phi (x) = \sum\nolimits_{k \ne 0} \Gamma (\frac{{2\pi ik}}{{1n2}})\zeta (\frac{{2\pi ik}}{{1n2}}){x^{ - \frac{{2\pi ik}}{{1n2}}}}\) is periodic in log2x and Γ(x) and ζ(x) denote the gamma and zeta functions, is the principal result of this work.
Негізгі сөздер
Авторлар туралы
E. Timofeev
Demidov Yaroslavl State University
Хат алмасуға жауапты Автор.
Email: timofeevea@gmail.com
Ресей, Yaroslavl, 150003
Қосымша файлдар
