Deep learning in pharmacy: The prediction of aqueous solubility based on deep belief network


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The aqueous solubility of a drug is a significant factor for its bioavailability. Since many drugs on the market are the oral drugs, their absorption and metabolism in organisms are closely related to its aqueous solubility. As one of the most important properties of drug, the molecule aqueous solubility has received increasing attentions in drug discovery field. The methods of shallow machine learning have been applied to the field of pharmacy, with some success. In this paper, we established a multilayer deep belief network based on semi-supervised learning model to predict the aqueous solubility of compounds. This method can be used for recognizing whether compounds are soluble or not. Firstly, we discussed the influence of feature dimension to predict accuracy. Secondly, we analyzed the parameters of model in predicting aqueous solubility of drugs and contrasted the shallow machine learning with the similar deep architecture. The results showed that the model we proposed can predict aqueous solubility accurately, the accuracy of DBN reached 85.9%. The stable performance on the evaluation metrics confirms the practicability of our model. Moreover, the DBN model could be applied to reduce the cost and time of drug discovery by predicting aqueous solubility of drugs.

作者简介

Shengwei Tian

School of Software

Email: yul_xju@163.com
中国, 499 Xibei Road, Urumqi, 830008

Li Li

Institute of Medical Engineering Technology

Email: yul_xju@163.com
中国, 393 Xinyi Road, Urumqi, 830011

Mei Wang

Pharmacy Department

Email: yul_xju@163.com
中国, 8 Xinyi Road, Urumqi, 830054

Xueyuan Lu

School of Software

Email: yul_xju@163.com
中国, 499 Xibei Road, Urumqi, 830008

Hong Li

School of Software

Email: yul_xju@163.com
中国, 499 Xibei Road, Urumqi, 830008

Long Yu

Network Center

编辑信件的主要联系方式.
Email: yul_xju@163.com
中国, 666 Shengli Road, Urumqi, 830046

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017