Deep learning in pharmacy: The prediction of aqueous solubility based on deep belief network


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The aqueous solubility of a drug is a significant factor for its bioavailability. Since many drugs on the market are the oral drugs, their absorption and metabolism in organisms are closely related to its aqueous solubility. As one of the most important properties of drug, the molecule aqueous solubility has received increasing attentions in drug discovery field. The methods of shallow machine learning have been applied to the field of pharmacy, with some success. In this paper, we established a multilayer deep belief network based on semi-supervised learning model to predict the aqueous solubility of compounds. This method can be used for recognizing whether compounds are soluble or not. Firstly, we discussed the influence of feature dimension to predict accuracy. Secondly, we analyzed the parameters of model in predicting aqueous solubility of drugs and contrasted the shallow machine learning with the similar deep architecture. The results showed that the model we proposed can predict aqueous solubility accurately, the accuracy of DBN reached 85.9%. The stable performance on the evaluation metrics confirms the practicability of our model. Moreover, the DBN model could be applied to reduce the cost and time of drug discovery by predicting aqueous solubility of drugs.

Об авторах

Shengwei Tian

School of Software

Email: yul_xju@163.com
Китай, 499 Xibei Road, Urumqi, 830008

Li Li

Institute of Medical Engineering Technology

Email: yul_xju@163.com
Китай, 393 Xinyi Road, Urumqi, 830011

Mei Wang

Pharmacy Department

Email: yul_xju@163.com
Китай, 8 Xinyi Road, Urumqi, 830054

Xueyuan Lu

School of Software

Email: yul_xju@163.com
Китай, 499 Xibei Road, Urumqi, 830008

Hong Li

School of Software

Email: yul_xju@163.com
Китай, 499 Xibei Road, Urumqi, 830008

Long Yu

Network Center

Автор, ответственный за переписку.
Email: yul_xju@163.com
Китай, 666 Shengli Road, Urumqi, 830046

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».