Genetic diversity of the chemosymbiotic bivalve Calyptogena pacifica Dall, 1891 (Vesicomyidae: Pliocardiinae)
- Autores: Belov D.A.1, Kremenetskaya A.V.1, Krylova E.M.1
-
Afiliações:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Edição: Volume 51, Nº 5 (2025)
- Páginas: 268-284
- Seção: ОРИГИНАЛЬНЫЕ СТАТЬИ
- ##submission.datePublished##: 15.09.2025
- URL: https://journals.rcsi.science/0134-3475/article/view/352483
- DOI: https://doi.org/10.31857/S0134347525050044
- ID: 352483
Citar
Resumo
Sobre autores
D. Belov
Shirshov Institute of Oceanology, Russian Academy of SciencesMoscow, 117997 Russia
A. Kremenetskaya
Shirshov Institute of Oceanology, Russian Academy of SciencesMoscow, 117997 Russia
E. Krylova
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: elenamkr@mail.ru
Moscow, 117997 Russia
Bibliografia
- Баранов Б.В., Вернер Р., Рашидов В.А. и др. Морфология подводного вулкана Пийпа в Командорской котловине по данным съемки многолучевым эхолотом // Вестн. КРАУНЦ. Науки о Земле. 2021. № 2. Вып. 50. С. 6–21.
- Галкин С.В., Мордухович В.В., Крылова Е.М. и др. Исследования экосистем гидротермальных выходов и холодных высачиваний в Беринговом море (82-й рейс научно-исследовательского судна “Академик М.А. Лаврентьев”) // Океанология. 2019. Т. 59. № 4. С. 687–690.
- Гордеева Н.В., Дриц А.В., Флинт М.В. Генетическое разнообразие копеподы Limnocalanus macrurus арктических морей России // Океанология. 2019. Т. 59. № 6. С. 998–1007.
- Крылова Е.М. Хемосимбиотрофные двустворчатые моллюски плиокардиины (Vesicomyidae: Pliocardiinae) Тихого океана / Матер. Всерос. конф. “Морская биология в 21 веке: систематика, генетика, экология морских организмов” (памяти академика О.Г. Кусакина) (Владивосток, 20–23 сен- тября 2022 г.). С. 184–185.
- Крылова Е.М., Галкин С.В., Мордухович В.В. и др. Новый регион восстановительных сообществ Мирового океана // Природа. 2019. № 6. С. 24–29.
- Полоник Н.С. Изучение газонасыщенного гидротермального флюида подводного вулкана Пийпа / Матер. XXI регион. науч. конф. “Вулканизм и связанные с ним процессы”. Петропавловск-Камчатский: ИВиС ДВО РАН. 2018. С. 197–199.
- Полоник Н.С. Источники метана на Корякском склоне Берингова моря // Природа. 2019. № 6. С. 36–43.
- Сагалевич А.М., Торохов П.В., Галкин С.В. и др. Гидротермальные проявления подводного вулкана Пийпа (Берингово море) // Изв. РАН. Сер. Геология. 1992. № 9. С. 104–114.
- Селиверстов Н.И. Геологическое строение и гидротермальная активность подводного вулкана Пийпа // Геодинамика зоны сочленения Курило-Камчатской и Алеутской островных дуг. Петропавловск-Камчатский: КамГУ им. Витуса Беринга. 2009. 191 с.
- Ягодина В.Д., Брыков В.А. Генетическое разнообразие мтДНК дальневосточного трепанга Apostichopus japonicus (Selenka, 1867) (Echinodermata: Holothuroidea) в заливе Петра Великого Японского моря // Биол. моря. 2023. Т. 49. № 1. С. 45–55.
- Amano K., Miyajima Y., Jenkins R.G., Kiel S. The Miocene to Recent biogeographic history of vesicomyid bivalves in Japan, with two new records of the family // Nautilus. 2019. V. 133. P. 48–56.
- Audzijonyte A., Krylova E.M., Sahling H., Vrijenhoek R.C. Molecular taxonomy reveals broad trans-oceanic distributions and high species diversity of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) in chemosynthetic environments // Syst. Biodiversity. 2012. V. 10. P. 403–415.
- Barry J.P., Kochevar R.E., Baxter C.H. The influence of pore-water chemistry and physiology in the distribution of vesicomyid clams at cold seeps in Monterey Bay: implications for patterns of chemosynthetic community organization // Limnol. Oceanogr. 1997. V. 42. P. 318–328.
- Breusing C., Johnson S.B., Tunnicliffe V., Vrijenhoek R.C. Population structure and connectivity in Indo-Pacific deep-sea mussels of the Bathymodiolus septemdierum complex // Conserv. Genet. 2015. V. 16. P. 1415–1430.
- Chen C., Okutani T., Liang Q., Qiu J.-W. A noteworthy new species of the family Vesicomyidae from the South China Sea (Bivalvia: Glossoidea) // Venus. 2018. V. 76. № 1–4. P. 29–37. http://doi.org/10.18941/venus.76.1-4_29
- Cheng J., Hui M., Li Y., Sha Z. Genomic evidence of population genetic differentiation in deep-sea squat lobster Shinkaia crosnieri (crustacea: Decapoda: Anomura) from northwestern Pacific hydrothermal vent and cold seep // Deep-Sea Res. Pt. I. 2020. V. 156. Art. ID 103188. https://doi.org/10.1016/j.dsr.2019.103188
- Cruaud P., Vigneron A., Pignet P. et al. Comparative study of Guaymas Basin microbiomes: cold seeps vs. hydrothermal vents sediments // Front. Mar. Sci. 2017. V. 4. Art. ID 417. https://doi.org/10.3389/fmars.2017.00417
- DeLeo D.M., Morrison C.L., Sei M. et al. Genetic diversity and connectivity of chemosynthetic cold seep mussels from the U.S. Atlantic margin // BMC Ecol. Evol. 2022. V. 22. Art. ID 76. https://doi.org/10.1186/s12862-022-02027-4
- Demina L.L., Galkin S.V., Krylova E.M. et al. Some biogeochemical characteristics of the trace element bioaccumulation in the benthic fauna of the Piip Volcano (the southwestern Bering Sea) // Minerals. 2021. V. 11. Art. ID 1233. https://doi.org/10.3390/min11111233
- Demina L.L., Galkin S.V., Krylova E.M. et al. Trace metal biogeochemistry in the methane seeps on the Koryak slope of the Bering Sea // Deep-Sea Res. Pt. II. 2022. V. 206. Art. ID 105219. https://doi.org/10.1016/j.dsr2.2022.105219
- Dubilier N., Bergin C., Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis // Nat. Rev. Microbiol. 2008. V. 6. P. 725–740.
- Duperron S., Gaudron S.M., Rodrigues C.F. et al. An overview of chemosynthetic symbioses in bivalves from the North Atlantic and Mediterranean Sea // Biogeosciences. 2013. V. 10. P. 3241–3267.
- Excoffier L., Lischer H.E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. № 3. P. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
- Fu Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection // Genetics. 1997. V. 147. № 2. P. 915–925. https://doi.org/10.1093/genetics/147.2.915
- Goffredi S.K., Hurtado L.A., Hallam S., Vrijenhoek R.C. 2003. Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the “pacifica/ lepta” species complex // Mar. Biol. 2003. V. 142. P. 311–320.
- Grant W.S. Problems and cautions with sequence mismatch analysis and bayesian skyline plots to infer historical demography // J. Hered. 2015. V. 106. № 4. P. 333–346. https://doi.org/10.1093/jhered/esv020
- Guillon E., Menot L., Decker C., Krylova E., Olu K. The vesicomyid bivalve habitat at cold seeps supports heterogeneous and dynamic macrofaunal assemblages // Deep-Sea Res. Pt. I. 2017. V. 120. P. 1–13. http://dx.doi.org/10.1016/j.dsr.2016.12.008
- Hurtado L.A., Mateos M., Lutz R.A., Vrijenhoek R.C. Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica // Appl. Environ. Microbiol. 2003. V. 69. P. 2058–2064.
- Jang S.-J., Cho S.-Y., Li C. et al. Geographical subdivision of Alviniconcha snail populations in the Indian Ocean hydrothermal vent regions // Front. Mar. Sci. 2023. V. 10. Art. ID 1139190. https://doi.org/10.3389/fmars.2023.1139190
- Jiang S., Li Z., Li J. et al. Analysis of genetic diversity and structure of eight populations of Nerita yoldii along the coast of China based on mitochondrial COI gene // Animals. 2024. V. 14. № 5. Art. ID 718. https://doi.org/10.3390/ani14050718
- Johnson S.B., Krylova E.M., Audzijonyte A. et al. Phylogeny and origins of chemosynthetic vesicomyid clams // Syst. Biodiversity. 2017. V. 15. № 4. P. 346–360.
- Karl S.A., Schutz S., Desbruyères D. et al. Molecular analysis of gene flow in the hydrothermal-vent clam Calyptogena magnifica // Mol. Mar. Biol. Biotechnol. 1996. V. 5. № 3. P. 193–202.
- Kojima S., Fujikura K., Okutani T. Multiple trans-Pacific migrations of deep-sea vent/seep-endemic bivalves in the family Vesicomyidae // Mol. Phylogenet. Evol. 2004. V. 32. P. 396–406.
- Kojima S., Tsuchida E., Numanami H. et al. Synonymy of Calyptogena solidissima with Calyptogena kawamurai (Bivalvia: Vesicomyidae) and its population structure revealed by mitochondrial DNA sequences // Zool. Sci. 2006. V. 23. № 10. P. 835–842. http://dx.doi.org/10.2108/zsj.23.835
- Kokarev V., Dufour S.C., Raeymaekers J.A.M. et al. Thyasirid species composition (Bivalvia: Thyasiridae) and genetic connectivity of Parathyasira equalis (A.E. Verrill & K.J. Bush, 1898) in deep basins of sub-Arctic fjords // BMC Ecol. Evol. 2024. V. 24. Art. № 91. https://doi.org/10.1186/s12862-024-02278-3
- Kozlov A.M., Darriba D., Flouri T. et al. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference // Bioinformatics (Oxford, England). 2019. V. 35. № 21. P. 4453–4455. https://doi.org/10.1093/bioinformatics/ btz305
- Krylova E.M., Sahling H. Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae) // J. Molluscan Stud. 2006. V. 72. № 4. P. 359–395.
- Krylova E.M., Sahling H. Vesicomyidae (Bivalvia): current taxonomy and distribution // PloS One. 2010. V. 5. № 4. Art. ID e9957. https://doi.org/10.1371/journal.pone.0009957
- Krylova E.M., Sahling H. A new genus Turneroconcha (Bivalvia: Vesicomyidae: Pliocardiinae) for the giant hydrothermal vent clam ‘Calyptogena’ magnifica // Zootaxa. 2020. V. 4808. № 1. P. 79–100. https://doi.org/10.11646/zootaxa.4808.1.4
- LaBella A.L., Van Dover C.L., Jollivet D., Cunningham C.W. Gene flow between Atlantic and Pacific Ocean basins in three lineages of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) and subsequent limited gene flow within the Atlantic // Deep-Sea Res. Pt. II. 2017. V. 137. № 1. P. 307–317. https://doi.org/10.1016/j.dsr2.2016.08.013
- Lanfear R., Frandsen P.B., Wright A.M. et al. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses // Mol. Biol. Evol. 2017. V. 34. P. 772–773.
- Leigh J.W., Bryant D. POPART: full-feature software for haplotype network construction // Methods Ecol. Evol. 2015. V. 6. P. 1110–1116.
- Levin L.A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes // Oceanogr. Mar. Biol. Annu. Rev. Boca Raton: CRC Press-Tay- lor & Francis Group. 2005. V. 43. P. 1–46.
- Levin L.A., Baco A.R., Bowden D.A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence // Front. Mar. Sci. 2016. V. 3. Art. ID 72. https://doi.org/10.3389/fmars.2016.00072
- Li Y., Wang L., Wang Y. et al. Population genetic structure and historical demography of Saccostrea echinata in the Northern South China sea and Beibu Gulf // Sci. Rep. 2025. V. 15. Art. ID8261. https://doi.org/10.1038/s41598-025-92747-6
- Methou P., Ogawa N.O., Nomaki H. et al. Genetic connectivity and isotopic niches of alvinocaridid shrimps from chemosynthetic habitats in Aotearoa/New Zealand, with a new Alvinocaris species // Mar. Ecol.: Prog. Ser. 2024. V. 739. P. 85–109. https://doi.org/10.3354/meps14611
- Ogura T., Watanabe H.K., Chen C. et al. Population history of deep-sea vent and seep Provanna snails (Mollusca: Abyssochrysoidea) in the northwestern Pacific // Peer J. 2018. V. 6. Art. ID e5673. https://doi.org/10.7717/peerj.5673
- Okutani T., Hashimoto J., Fujikura K. A new species of vesicomyid bivalve associated with hydrothermal vents near Amami-Oshima Island, Japan // Venus. 1992. V. 51. P. 225–233.
- Ozawa G., Shimamura S., Takaki Y. et al. Ancient occasional host switching of maternally transmitted bacterial symbionts of chemosynthetic vesicomyid clams // Genome Biol. Evol. 2017. V. 9. № 9. P. 2226–2236. https://doi.org/10.1093/gbe/evx166
- Peek A.S., Gustafson R.G., Lutz R.A., Vrijenhoek R.C. Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): results from the mitochondrial cytochrome oxidase subunit I // Mar. Biol. 1997. V. 130. P. 151–161.
- Perez M., Breusing C., Angers B. et al. Divergent paths in the evolutionary history of maternally transmitted clam symbionts // Proc. R. Soc. B. 2022. V. 289. Art. ID 20212137. https://doi.org/10.1098/rspb.2021.2137
- Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C. et al. DnaSP 6: DNA Sequence Polymorphism analysis of large datasets // Mol. Biol. Evol. 2017. V. 34. № 12. P. 3299–3302. https://doi.org/10.1093/molbe v/msx248
- Rybakova E., Krylova E., Mordukhovich V. et al. Methane seep communities on the Koryak slope in the Bering Sea // Deep-Sea Res. Pt. II. 2022. V. 206. Art. ID 105203. https://doi.org/10.1016/j.dsr2.2022.105203
- Rybakova E., Krylova E., Mordukhovich V. et al. Mega- and macrofauna of the hydrothermally active submarine Piip Volcano (the southwestern Bering Sea) // Deep-Sea Res. Pt. II. 2023. V. 208. Art. ID 105268. https://doi.org/10.1016/j.dsr2.2023.105268
- Shen Y., Kou Q., Chen W. et al. Comparative population structure of two dominant species, Shinkaia crosnieri (Munidopsidae: Shinkaia) and Bathymodiolus platifrons (Mytilidae: Bathymodiolus), inhabiting both deep-sea vent and cold seep inferred from mitochondrial multi-genes // Ecol. Evol. 2016. V. 6. № 11. P. 3571–3582. https://doi.org/10.1002/ece3.2132
- Smith C.R., Bernardino A.F., Baco A. et al. Seven-year enrichment: macrofaunal succession in deep-sea sediments around a 30 tonne whale fall in the Northeast Pacific // Mar. Ecol.: Prog. Ser. 2014. V. 515. P. 133–149. https://doi.org/10.3354/meps10955
- Stecher J., Tunnicliffe V., Türkay M. Population characteristics of abundant bivalves (Mollusca, Vesicomyidae) at a sulphide-rich seafloor site near Lihir Island, Papua New Guinea // Can. J. Zool. 2003. V. 81. P. 1815–1824.
- Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism // Genetics. 1989. V. 123. P. 585–595.
- Teixeira S., Olu K., Decker C. et al. High connectivity across the fragmented chemosynthetic ecosystems of the deep Atlantic Equatorial Belt: efficient dispersal mechanisms or questionable endemism? // Mol. Ecol. 2013. V. 22. № 18. 4663–4680. https://doi.org/10.1111/mec.12419
- Tran Lu Y.A., Ruault S., Daguin-Thiébaut C. et al. Subtle limits to connectivity revealed by outlier loci within two divergent metapopulations of the deep-sea hydrothermal gastropod Ifremeria nautilei // Mol. Ecol. 2022. V. 31. № 10. P. 2796–2813. https://doi.org/10.1111/mec.16430
- Tunnicliffe V., Breusing C. Redescription of Bathymodiolus septemdierum Hashimoto and Okutani, 1994 (Bivalvia, Mytilida, Mytilidae), a mussel broadly distributed across hydrothermal vent locations in the western Pacific and Indian Oceans // Zootaxa. 2022. V. 5214. № 3. P. 337–364.
- Tunnicliffe V., Juniper S.K., Sibuet M. Reducing environments of the deep-sea floor // Ecosystems of the deep oceans / Ed. P.A. Tyler. Ecosystems of the World. Amsterdam: Elsevier. 2003. V. 28. P. 81–110.
- van der Heijden K., Petersen J.M., Dubilier N., Borowski C. Genetic connectivity between North and South Mid-Atlantic Ridge chemosynthetic bivalves and their symbionts // PloS One. 2012. V. 7. № 7. Art. ID 39994. https://doi.org/10.1371/journal.pone.0039994
- Van Dover C.L. The ecology of deep-sea hydrothermal vents. Princeton, N. J.: Princeton Univ. Press. 2000. 415 p.
- Vrijenhoek R.C. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations // Mol. Ecol. 2010. V. 19. № 20. P. 4391–4411. https://doi.org/10.1111/j.1365-294X.2010.04789.x
- Wang X., Kong L., Chen J. et al. Phylogeography of bivalve Meretrix petechialis in the Northwestern Pacific indicated by mitochondrial and nuclear DNA data // PLoS One. 2017. V. 12. № 8. Art. ID e0183221. https://doi.org/10.1371/journal. pone.0183221
- Xu T., Sun J., Watanabe H.K. et al. Population genetic structure of the deep-sea mussel Bathymodiolus platifrons (Bivalvia: Mytilidae) in the Northwest Pacific // Evol. Appl. 2018. V. 11. P. 1915–1930. https://doi.org/10.1111/eva.12696
- Yang C.H., Tsuchida S., Fujikura K. et al. Connectivity of the squat lobsters Shinkaia crosnieri (Crustacea: Decapoda: Galatheidae) between cold seep and hydrothermal vent habitats // Bull. Mar. Sci. 2016. V. 92. № 1. P. 17–31. https://doi.org/10.5343/bms.2015.1031
- Young C.M., Sewell M.A., Tyler P.A., Metaxas A. Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the role of larval dispersal // Biodiversity Conserv. 1997. V. 6. P. 1507–1522.
- Zelada-Mázmela E., Reyes-Flores L.E., Sánchez-Velásquez J.J. et al. Population structure and demographic history of the gastropod Thaisella chocolate (Duclos, 1832) from the Southeast Pacific inferred from mitochondrial DNA analyses // Ecol. Evol. 2022. V. 12. Art. ID e9276. https://doi.org/10.1002/ece3.9276
- Zhang Y., Cheng J., Sha Z., Hui M. Population genetic structure and implication for adaptive differentiation of the snail (Gastropoda, Provannidae) in deep-sea chemosynthetic ecosystems // Zool. Scr. 2024. V. 53. № 2. P. 192–206. https://doi.org/10.1111/zsc.12634
Arquivos suplementares


