Компьютерно-алгебраические вычисления в суперсимметричной электродинамике

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предлагаются новый символьный алгоритм и С++ программа для генерации и вычисления суперсимметричных диаграмм Фейнмана для \(\mathcal{N} = 1\) суперсимметричной электродинамики, регуляризованной высшими производными в четырех измерениях. Программа генерирует, в соответствии со стандартными правилами, все диаграммы, необходимые для вычисления конкретного вклада в двухточечную функцию Грина суперполей материи в рассматриваемом порядке, а затем сводит ответ к сумме евклидовых импульсных интегралов. На данный момент программа применялась для вычисления аномальной размерности в \(\mathcal{N} = 1\) суперсимметричной квантовой электродинамики, регуляризованной высшими производными, в трехпетлевом приближении.

Об авторах

И. Е. Широков

Физический факультет МГУ им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: shi95@yandex.ru
Россия, 119991, Москва, Ленинские горы, д. 1 с. 2

Список литературы

  1. Campbell J.A., Hearn A.C. Symbolic analysis of feynman diagrams by computer // J. Comput. Phys. 1970. V. 5. P. 280.
  2. Гердт В.П., Тарасов О.В., Ширков Д.В. Аналитические вычисления на ЭВМ в приложении к физике и математике // УФН, 1980. Т. 130. С. 113–147.
  3. Nogueira P. Automatic Feynman graph generation // J. Comput. Phys. 1993. V. 105. P. 279–289.
  4. Kublbeck J., Bohm M., Denner A. Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes // Comput. Phys. Commun. 1990. V. 60. P. 165–180. a8 citations counted in INSPIRE as of 04 Feb 2022
  5. Papadopoulos C.G. PHEGAS: A Phase space generator for automatic cross-section computation // Comput. Phys. Commun., 2001. V. 137. P. 247–254.
  6. Moretti M., Ohl T., Reuter J. O’Mega: An Optimizing matrix element generator // [arXiv:hep-ph/0102195 [hep-ph]].
  7. Maltoni F., Stelzer T. MadEvent: Automatic event generation with MadGraph // JHEP. 2003. V. 02. P. 027.
  8. Wang J.X. Progress in FDC project // Nucl. Instrum. Meth. A, 2004. V. 534. P. 241–245.
  9. Boos E. et al. [CompHEP] CompHEP 4.4: Automatic computations from Lagrangians to events // Nucl. Instrum. Meth. A. 2004. V. 534. P. 250–259.
  10. Belyaev A., Christensen N.D., Pukhov A. CalcHEP 3.4 for collider physics within and beyond the Standard Model // Comput. Phys. Commun. 2013. V. 184. P. 1729–1769.
  11. Kilian W., Ohl T., Reuter J. WHIZARD: Simulating Multi-Particle Processes at LHC and ILC // Eur. Phys. J. C. 2011. V. 71. P. 1742.
  12. Bahr M., Gieseke S., Gigg M.A., Grellscheid D., Hamilton K., Latunde-Dada O., Platzer S., Richardson P., Seymour M.H., Sherstnev A., et al. Herwig++ Physics and Manual // Eur. Phys. J. C. 2008. V. 58. P. 639–707.
  13. Gleisberg T., Hoeche S., Krauss F., Schonherr M., Schumann S., Siegert F., Winter J. Event generation with SHERPA 1.1 // JHEP. 2009. V. 02. P. 007.
  14. Cullen G., van Deurzen H., Greiner N., Heinrich G., Luisoni G., Mastrolia P., Mirabella E., Ossola G., Peraro T., Schlenk J., et al. GOSAM-2.0: a tool for automated one-loop calculations within the Standard Model and beyond // Eur. Phys. J. C. 2014. V. 74. № 8. P. 3001.
  15. Alwall J., Frederix R., Frixione S., Hirschi V., Maltoni F., Mattelaer O., Shao H.S., Stelzer T., Torrielli P., Zaro M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations // JHEP. 2014. V. 07. P. 079.
  16. Hahn T. Generating Feynman diagrams and amplitudes with FeynArts 3 // Comput. Phys. Commun. 2001. V. 140. P. 418–431.
  17. Wolfram Wolfram Mathematica, 2022. https://www.wolfram.com/mathematica/
  18. Maplesoft, a division of Waterloo Maple Inc. Maple, 2022. https://www.maplesoft.com/products/maple/
  19. Veltman M.J.G., Williams D.N. Schoonschip’91 // [arXiv:hep-ph/9306228 [hep-ph]].
  20. Ruijl B., Ueda T., Vermaseren J. FORM version 4.2 // [arXiv:1707.06453 [hep-ph]].
  21. Vollinga J. GiNaC: Symbolic computation with C++ // Nucl. Instrum. Meth. A. 2006. V. 559. P. 282–284.
  22. Peeters K. A Field-theory motivated approach to symbolic computer algebra // Comput. Phys. Commun. 2007. V. 176. P. 550–558.
  23. Bolotin D.A., Poslavsky S.V. Introduction to Redberry: a computer algebra system designed for tensor manipulation // [arXiv:1302.1219 [cs.SC]].
  24. Shtabovenko V., Mertig R., Orellana F. FeynCalc 9.3: New features and improvements // Comput. Phys. Commun. 2020. V. 256. P. 107478.
  25. Chetyrkin K.G., Tkachov F.V. Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops // Nucl. Phys. B. 1981. V. 192. P. 159–204.
  26. Anastasiou C., Lazopoulos A. Automatic integral reduction for higher order perturbative calculations // JHEP. 2004. V. 07. P. 046.
  27. Smirnov A.V., Chuharev F.S. FIRE6: Feynman Integral REduction with Modular Arithmetic // Comput. Phys. Commun. 2020. V. 247. P. 106877.
  28. Lee R.N. LiteRed 1.4: a powerful tool for reduction of multiloop integrals // J. Phys. Conf. Ser. 2014. V. 523. P. 012059.
  29. Studerus C. Reduze-Feynman Integral Reduction in C++ // Comput. Phys. Commun. 2010. V. 181. P. 1293–1300.
  30. Maierhöfer P., Usovitsch J., Uwer P. Kira–A Feynman integral reduction program // Comput. Phys. Commun. 2018. V. 230. P. 99–112.
  31. Dubovyk I., Gluza J., Riemann T., Usovitsch J. Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions // PoS. 2016. V. LL2016. P. 034.
  32. Smirnov A.V. FIESTA4: Optimized Feynman integral calculations with GPU support // Comput. Phys. Commun. 2016. V. 204. P. 189–199.
  33. Borowka S., Heinrich G., Jones S.P., Kerner M., Schlenk J., Zirke T. SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop // Comput. Phys. Commun. 2015. V. 196. P. 470–491.
  34. Gorishnii S.G., Larin S.A., Surguladze L.R., Tkachov F.V. Mincer: Program for Multiloop Calculations in Quantum Field Theory for the Schoonschip System // Comput. Phys. Commun. 1989. V. 55. P. 381–408.
  35. Gorishnii S.G., Kataev A.L., Larin S.A., Surguladze L.R. The Analytical four loop corrections to the QED Beta function in the MS scheme and to the QED psi function: Total reevaluation // Phys. Lett. B. 1991. V. 256. P. 81–86.
  36. Lorca A., Riemann T. Automated calculations for massive fermion production with aITALC // Nucl. Phys. B Proc. Suppl. 2004. V. 135. P. 328–332.
  37. Fontes D., Romão J.C. FeynMaster: a plethora of Feynman tools // Comput. Phys. Commun. 2020. V. 256. P. 107311.
  38. Feng F., Xie Y.F., Zhou Q.C., Tang S.R. HepLib: A C++ library for high energy physics // Comput. Phys. Commun. 2021. V. 265. P. 107982.
  39. Gerlach M., Herren F., Lang M. tapir: A tool for topologies, amplitudes, partial fraction decomposition and input for reductions // [arXiv:2201.05618 [hep-ph]].
  40. Hahn T., Schappacher C. The Implementation of the minimal supersymmetric standard model in FeynArts and FormCalc // Comput. Phys. Commun. 2002. V. 143. P. 54–68.
  41. Kreuzberger T., Kummer W., Schweda M. SUSYCAL: A PROGRAM FOR SYMBOLIC COMPUTATIONS IN SUPERSYMMETRIC THEORIES // Comput. Phys. Commun. 1990. V. 58. P. 89–104.
  42. Ferrari A.F. SusyMath: A Mathematica package for quantum superfield calculations // Comput. Phys. Commun. 2007. V. 176. P. 334–346.
  43. Степаньянц К.В. Классическая теория поля. М.: ФИЗМАТЛИТ, 2009. 540 с.
  44. Боголюбов Н.Н., Ширков Д.В. Введение в теорию квантованных полей. М.: Наука, 1973. 416 с.
  45. Уэст П. Введение в суперсимметрию и супергравитацию. Пер. с англ. М.: Мир, 1989. 328 с.; West P.C. Introduction to supersymmetry and supergravity. Singapore: World Scientific, 1990. 425 p.
  46. Tarasov O.V., Vladimirov A.A. Three Loop Calculations in Non-Abelian Gauge Theories // Phys. Part. Nucl. 2013. V. 44. P. 791–802.
  47. OpenMP ARB OpenMP 5.2 Reference Guide, 2021. https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5-2-web.pdf
  48. Gates S.J., Grisaru M.T., Rocek M., Siegel W. Superspace Or One Thousand and One Lessons in Supersymmetry // Front. Phys. 1983. V. 58. P. 1–548.
  49. Buchbinder I.L., Kuzenko S.M. Ideas and Methods of Supersymmetry and Supergravity: Or a Walk Through Su-perspace, IOP, Bristol, UK, 1998. 656 p.
  50. Slavnov A.A. Invariant regularization of nonlinear chiral theories // Nucl. Phys. B. 1971. V. 31. P. 301–315.
  51. Славнов A.A. Инвариантная регуляризация калибровочных теорий // ТМФ. 1972. Т. 13:2. С. 174–177.
  52. Кривощеков В.К. Инвариантная регуляризация для суперсимметричных калибровочных теорий // ТМФ. 1978. Т. 36. С. 291.
  53. West P.C. Higher Derivative Regulation Of Supersymmetric Theories // Nucl. Phys. B. 1986. V. 268. P. 113.
  54. Славнов А.А. Регуляризация Паули–Вилларса для неабелевых калибровочных групп // ТМФ. 1977. Т. 33:2. С. 210–217.
  55. Катаев А.Л., Степаньянц К.В. -Функция Новикова–Шифмана–Вайнштейна–Захарова в суперсимметричных теориях при различных регуляризациях и перенормировочных предписаниях // ТМФ. 2014. Т. 181:3. С. 475–486.
  56. Aleshin S.S., Durandina I.S., Kolupaev D.S., Korneev D.S., Kuzmichev M.D., Meshcheriakov N.P., Novgorodtsev S.V., Petrov I.A., Shatalova V.V., Shirokov I.E. et al. Three-loop verification of a new algorithm for the calculation of a -function in supersymmetric theories regularized by higher derivatives for the case of SQED // Nucl. Phys. B. 2020. V. 956. P. 115020.
  57. Shirokov I.E., Stepanyantz K.V. The three-loop anomalous dimension and the four-loop -function for SQED regularized by higher derivatives // JHEP. 2022. V. 2204. P. 108.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (28KB)

© И.Е. Широков, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах