Computer-algebraic approach to first differential approximation: Van der Pol oscillator

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

First differential approximation has been used to analyze various numerical methods for solving systems of ordinary differential equations. This has made it possible to estimate the stiffness of the ODE system that models the oscillations of the Van der Pol oscillator and the error of the method as well as to propose simple criteria for choosing a calculation step. The presented methods allow one to perform efficient calculations using computer algebra systems.

Sobre autores

Yu. Blinkov

Saratov State National Research University, ul. Astrakhanskaya 83

Autor responsável pela correspondência
Email: blinkovua@info.sgu.ru
Rússia, Saratov, 410012

Bibliografia

  1. Yanenko N.N., Shokin Yu.I. On the first differential approximation of difference schemes for hyperbolic systems of equations, Sib. Mat. Zh., 1969. V. 10. No. 5. P. 1173–1187.
  2. Blinkov Yu.A., Gerdt V.P., Marinov K.B. Discretization of quasilinear evolution equations by computer algebra methods. Program. Comput. Software. 2017. V. 43. No. 2. P. 84–89.
  3. Blinkov Yu.A., Rebrina A.Yu. Investigation of difference schemes for two-dimensional Navier–Stokes equations by using computer algebra algorithms, Program. Comput. Software, 2023. V. 49. No. 1. P. 26–31.
  4. Blinkova A.Yu., Malykh M.D., evast’yanov L.A. On differential approximations of difference schemes, Izv. Sarat. Univ., Nov. Ser., Ser. Mat., Mekh., Inf. 2021. V. 21. No. 4. P. 472–488.
  5. Kutta M. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik. 1901. V. 46. P. 435–453.
  6. Bashforth F. An Attempt to test the Theories of Capillary Action by comparing the theoretical and measured forms of drops of fluid. With an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops, by J. C. Adams, Cambridge. 1883.
  7. Moulton F.R. New methods in exterior ballistics, University of Chicago Press. 1926.
  8. van der Pol B. On “Relaxation-Oscillations”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1926. N. 2. P. 978–89992. doi: 10.1080/14786442608564127
  9. Kolchin E.R. Differential Algebra and Algebraic Groups. Academic Press, New York, 1973. 446 p.
  10. Buchberger B. Gröbner bases: an Buchberger algorithmic method in polynomial ideal theory. Recent Trends in Multidimensional System Theory / Ed. by N. K. Bose. V. 6. 1985. P. 184–232.
  11. Duffing G. Brzwungene Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung, Braunschweig, 1918.
  12. Curtiss C.F., Hirschfelder J.О. Integration of stiff equations. Proceedings of the National Academy of Sciences of the USA. 1952. V. 38. N. 3. P. 235–243. doi: 10.1073/pnas.38.3.235
  13. Crank J., Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc. 1947. V. 43. N. 1. P. 50–67. doi: 10.1017/S0305004100023197
  14. Dorman J.R., Prince P.J. A family of embedded Runge–Kutta formulae. Journal of Computational and Applied Mathematics. 1980. V. 6. N. 1. P. 19–26. doi: 10.1016/0771-050X(80)90013-3

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies