Constructing compartmental models of dynanic systems using a software package for symbolic computation in Julia

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper considers the problem of constructing compartmental models of dynamic systems by using a software package for symbolic calculation written in Julia. The software package is aimed at unifying the formalized construction of compartmental models, taking into account the meaningful description of possible interactions among compartments and the influence of various factors on the evolution of systems. An approach to the development of the instrumental and methodological basis for modeling the dynamic systems the behavior of which can be described by one-step processes is developed. The proposed software package enables the symbolic representation of the differential equations of the model in both stochastic and deterministic cases. It is implemented in Julia and uses the Julia Symbolics computer algebra library. A comparison between the Julia Symbolics tools and some other computer algebra systems is carried out. The application of the developed software package to a compartmental model is considered. The results can be used to solve problems of constructing and studying dynamic models in natural sciences that are represented by onestep processes.

Авторлар туралы

A. Demidova

RUDN University

Хат алмасуға жауапты Автор.
Email: demidova-av@rudn.ru
Ресей, 6 Miklukho-Maklaya St, Moscow, 117198

O. Druzhinina

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: ovdruzh@mail.ru
Ресей, 44-2, Vavilov St., Moscow, 119333

O. Masina

Bunin Yelets State University

Email: olga121@inbox.ru
Ресей, 28, Kommunarov St., Yelets, Lipetsk region, 399770

А. Petrov

Bunin Yelets State University

Email: xeal91@yandex.ru
Ресей, 28, Kommunarov St., Yelets, Lipetsk region, 399770

Әдебиет тізімі

  1. Kulyabov D.S. Analytical overview of symbolic computation systems, Vestn. Ross. Univ. Druzhby Nar., Ser. Mat. Inf. Fiz. 2007. №. 1–2. P. 38–45.
  2. Kolesov Yu.B., Senichenkov Yu.B. Komponentnoe modelirovanie slozhnykh dinamicheskikh sistem (Component Modeling of Complex Dynamic Systems), St. Petersburg: S.-Peterb. Politekh. Univ. Petra Velikogo, 2020.
  3. Banshchikov A.V., Burlakova L.A., Irtegov V.D., Titorenko T.N. Symbolic computation in modeling and qualitative analysis of dynamic systems // Vychisl.Tekhnol. 2014. № 6. P. 3–18.
  4. Banshchikov A., Vetro A. Application of software tools for symbolic description and modeling of mechanical systems, Proc. 2nd Int. Workshop Information, Computation, and Control Systems for Distributed Environments (ICCSDE). 2020. P. 33–42.
  5. Demidova A.V., Druzhinina O.V., Masina O.N., Petrov A.A. Development of algorithms and software for modeling controlled dynamic systems using symbolic computations and stochastic methods // Program. Comput. Software. 2023. V. 49. P. 108–121.
  6. Kabanikhin S.I., Krivorotko O.I. Mathematical modeling of the Wuhan COVID-2019 epidemic and inverse problems // Comput. Math. Math. Phys. 2020. V. 60. P. 1889–1899.
  7. Hamelin F., Iggidr A., Rapaport A., Sallet G. Observability, identifiability, and epidemiology: A survey, 2023. https://arxiv.org/abs/2011.12202.
  8. Chebotaeva V., Vasquez P.A. Erlang-distributed SEIR epidemic models with cross-diffusion, Mathematics. 2023. V. 11. № 9. P. 2167. https://www.mdpi.com/2227-7390/11/9/2167.
  9. Kisselevskaya-Babinina V.Ya., Romanyukha A.A., Sannikova T.E. Mathematical model of COVID-19 progression: Prediction of severity and outcome, Math. Models Comput. Simul. 2023. V. 15. P. 987–998.
  10. Ghosh S., Volpert V., Banerjee M. An epidemic model with time delay determined by the disease duration // Mathematics. 2022. V. 10. № 15. P. 2561. https://www.mdpi.com/2227-7390/10/15/2561.
  11. Ariffin M., Gopal K., Krishnarajah I., Cheilias I., Adam M., Arasan J., Rahman N., Dom N., Sham N. Mathematical epidemiologic and simulation modeling of first wave COVID-19 in Malaysia // Sci. Rep. 2021. V. 11. P. 20739.
  12. Roman H.E., Croccolo F. Spreading of infections on network models: Percolation clusters and random trees, Mathematics. 2021. V. 9. № 23. P. 3054. https://www.mdpi.com/2227-7390/9/23/3054.
  13. Giordano G., Blanchini F., Bruno R., Colaneri P., Filippo A., Di Matteo A., Colaneri M. Modeling the COVID-19 epidemic and implementation of population-wide interventions in Italy // Nat. Med. 2020. V. 26. P. 855–860.
  14. Demidova A.V. Equations of population dynamics in the form of stochastic differential equations // Vestn. Ross. Univ. Druzhby Nar., Ser. Mat. Inf. Fiz. 2013. № 1. P. 67–76. https://journals.rudn.ru/miph/article/view/8319.
  15. Gevorkyan M.N., Velieva T.R., Korolkova A.V., Kulyabov D.S., Sevastyanov L.A. Stochastic Runge–Kutta software package for stochastic differential equations // Dependability Engineering and Complex Systems, Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., and Kacprzyk, J., Eds., Springer. 2016. V. 470. P. 169–179.
  16. Gevorkyan M.N., Demidova A.V., Korolkova A.V., Kulyabov D.S. Issues in the software implementation of stochastic numerical Runge–Kutta // Distributed Computer and Communication Networks, Vishnevskiy, V.M. and Kozyrev, D., Eds., Springer. 2018. V. 919. P. 532–546.
  17. Gevorkyan M.N., Demidova A.V., Velieva T.R., Korolkova A.V., Kulyabov D.S., Sevastyanov L.A. Implementing a method for stochastization of one-step processes in a computer algebra system, Program. Comput. Software. 2018. V. 44. P. 86–93.
  18. Gardiner C.W. Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, Heidelberg: Springer, 1985.
  19. Van Kampen N. Stochastic Processes in Physics and Chemistry, Amsterdam: Elsevier, 1992.
  20. Bezanson J., Karpinski S., Shah, V., Edelman A. Julia: A fast dynamic language for technical computing, 2012. https://arxiv.org/abs/1209.5145.
  21. Gowda S., Ma Y., Cheli A., Gwozzdz M., Shah V.B., Edelman A., Rackauckas C. High-performance symbolic-numerics via multiple dispatch // ACM Commun. Comput. Algebra. 2022. V. 55. № 3. P. 92–96. https://doi.org/10.1145/3511528.3511535
  22. Kulyabov D.S., Korolkova A.V. Computer algebra in JULIA // Program. Comput. Software. 2021. Vol. 47. P. 133–138.
  23. Fedorov A.V., Masolova A.O., Korolkova A.V., Kulyabov D.S. ApplicatioN of a numerical-analytical approach in the process of modeling differential equations in the Julia language // J. Phys.: Conf. Ser. 2020. V. 1694. № 1. P. 012026. https://doi.org/10.1088/1742-6596/1694/1/012026.
  24. Abotaleb M.S., Makarovskikh T. Analysis of neural network and statistical models used for forecasting of a disease infection cases // Technol. Nanotechnol. 2021. P. 1–7.
  25. Tuluri F., Remata R., Walters W. L., Tchounwou P.B. Application of machine learning to study the association between environmental factors and COVID-19 cases in Mississippi, USA // Mathematics. 2022. V. 10. № 6. P. 850. https://www.mdpi.com/2227-7390/10/6/850.
  26. Roman H.E., Croccolo F. Spreading of infections on network models: Percolation clusters and random trees // Mathematics. 2021. V. 9. № 23. P. 3054. https://www.mdpi.com/2227-7390/9/23/3054.
  27. Romanyukha A.A. Matematicheskie modeli v immunologii i epidemiologii infektsionnykh zabolevanii (Mathematical Models in Immunology and Epidemiology of Infectious Diseases), Moscow: Binom. Laboratoriya znanii, 2011.
  28. Kermack W.O., McKendrick A.G. Contributions to the mathematical theory of epidemics // Proc. R. Soc. London, Ser. A. 1927. V. 115. P. 700–721.
  29. Strauss R.R., Bishnu S., Petersen M.R. Comparing the performance of Julia on CPUs versus GPUs and Julia-MPI versus Fortran-MPI: A case study with MPAS-Ocean (Version 7.1), EGUsphere. 2023. V. 2023. P. 1–22.
  30. Rackauckas C., Nie Q. Differentialequations.jl: A performant and feature-rich ecosystem for solving differential equations in Julia, J. Open Res. Software, 2017.
  31. Loman T.E., Ma Y., Ilin V., Gowda S., Korsbo N., Yewale N., Rackauckas C., Isaacson S.A. Catalyst: Fast biochemical modeling with Julia, 2022. https://www.biorxiv.org/content/early/2022/08/ 02/2022.07.30.502135.
  32. Angevaare J., Feng, Z., Deardon R. Pathogen.jl: Infectious disease transmission network modeling with Julia // J. Stat. Software. 2022. V. 104. № 4. P. 1–30. https://www.jstatsoft.org/index.php/jss/article/view/v104i04.
  33. Apreutesei A.M.Yu., Korolkova A.V., Kulyabov D.S. Capabilities of hybrid modeling of systems with control in Modelica and Julia languages // Mater. XXIII Mezhdunar. Nauchn. Konf. “Raspredelennye komp’yuternye i telekommunikatsionnye seti: upravlenie, vychislenie, svyaz” (Proc. 23rd Int. Sci. Conf. Distributed Computer and Communication Networks: Control, Computation, Communications). 2020. P. 433–440.
  34. Apreutesey A.M.Y., Korolkova A.V., Kulyabov D.S. Hybrid modeling of the red algorithm in the Julia language // J. Phys.: Conf. Ser. 7. 2020. P. 012025.

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>