Solving rician data analysis problems: theory and numerical modeling using computer algebra metods in Wolfram Mathematica

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper considers theoretical foundations and mathematical methods of data analysis under the conditions of the Rice statistical distribution. The problem involves joint estimation of the signal and noise parameters. It is shown that this estimation requires the solution of a complex system of essentially nonlinear equations with two unknown variables, which implies significant computational costs. This study is aimed at mathematical optimization of computer algebra methods for numerical solution of the problem of Rician data analysis. As a result of the optimization, the solution of the system of two nonlinear equations is reduced to the solution of one equation with one unknown variable, which significantly simplifies algorithms for the numerical solution of the problem, reduces the amount of necessary computational resources, and enables the use of advanced methods for parameter estimation in information systems with priority of real-time operation. Results of numerical experiments carried out using Wolfram Mathematica confirm the effectiveness of the developed methods for two-parameter analysis of Rician data. The data analysis methods considered in this paper are useful for solving many scientific and applied problems that involve analysis of data described by the Rice statistical model.

About the authors

T. V. Yakovleva

Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

Author for correspondence.
Email: tan-ya@bk.ru
ORCID iD: 0000-0003-2401-9825
Russian Federation, ul. Vavilova 44/2, Moscow, 119333

References

  1. Rice S. O. Mathematical analysis of random noise // Bell Syst. Technological J. 1944. V. 23. P. 282.
  2. Benedict T.R., Soong T.T. The joint estimation of signal and noise from the sum envelope IEEE Transactions on Information Theory. Institute of Electrical and Electronics Engineers. 1967. V. 13. № 3. P. 447–454.
  3. Talukdar K.K., Lawing W.D. Estimation of the parameters of Rice distribution ,J. Acoust. Soc. Amer., Mar. 1991. V. 89. № 3. P. 1193–1197.
  4. Sijbers J., den Dekker A.J., Scheunders P., Van Dyck D. Maximum-Likelihood Estimation of Rician Distribution Parameters, IEEE Transactions on Medical Imaging. 1998. V. 17. № 3. P. 357–361.
  5. Yakovleva T.V. A Theory of Signal Processing at the Rice Distribution, Dorodnicyn Computing Centre, RAS, Moscow, 2015, 268 p.
  6. Deutsch R. Estimation Theory. NJ: Prentice-Hall: Englewood Cliifs, 1965.
  7. Port S.C. Theoretical Probability for Applications. New York: Wiley, 1944.
  8. Venttsel’ E.S., Teoriya veroyatnostei (Probability Theory), Moscow: Akademiya, 2005, 10th ed.
  9. Park J.H. Moments of the generalized Rayleigh distribution // Quarterly of Applied Mathematics. 1961. V. 19. № 1. P. 45–49.
  10. Abramowitz, M., Stegun, I.A. Handbook of Mathematical Functions, United States Department of Commerce, National Bureau of Standards (NBS), 1964.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies