SYMBOLIC CALCULATIONS IN THE STUDY OF SECULAR PERTURBATIONS IN THE MANY-BODY PROBLEM WITH VARIABLE MASSES
- Авторлар: Prokopenya A.N.1, Minglibayev M.Z.2, Saparova M.R.2
-
Мекемелер:
- Warsaw University of Life Sciences
- Al-Farabi Kazakh National University
- Шығарылым: № 1 (2025)
- Беттер: 40-50
- Бөлім: COMPUTER ALGEBRA
- URL: https://journals.rcsi.science/0132-3474/article/view/287078
- DOI: https://doi.org/10.31857/S0132347425010051
- EDN: https://elibrary.ru/DXMMXG
- ID: 287078
Дәйексөз келтіру
Аннотация
Авторлар туралы
A. Prokopenya
Warsaw University of Life Sciences
Email: alexander_prokopenya@sggw.edu.pl
Warsaw, Poland
M. Minglibayev
Al-Farabi Kazakh National University
Email: minglibayev@gmail.com
Almaty, Kazakhstan
M. Saparova
Al-Farabi Kazakh National University
Email: moldir170788@gmail.com
Almaty, Kazakhstan
Әдебиет тізімі
- Roy A.E. Orbital Motion, Bristol: Hilger, 1978
- Murray K.D., Dermot S.F. Solar System Dynamics, Cambridge: Cambridge Univ. Press, 1999.
- Laskar J. Chaotic diffusion in the Solar System. Icarus. 2008. V. 196(1). P. 1–15.
- Zeebe R.E. Dynamic stability of the solar system: statistically inconclusive results from ensemble integrations. The Astrophysical Journal. 2015. V. 798:8. P. 1–13.
- Makkeev A.P. Libration Points in Celestil Mechanics and Space Dynamics, Moscow: Nauka, 1978 [in Russian]
- Celletti A., Chierchia L. KAM stability for a threebody problem of our Solar System. Zeitschrift fur angewandte Mathematik und Physik ZAMP. 2006. V. 57. P. 33–41.
- Prokopenya A.N. Determination of the stability boundaries for the Hamiltonian systems with periodic coeffficients. Mathematical Modelling and Analysis. 2005. V. 10(2). P. 191–204.
- Prokopenya A.N. Computing the stability boundaries for the Lagrange triangular solutions in the elliptic restricted three-body problem. Mathematical Modelling and Analysis. 2006. V. 11(1). P. 95–104.
- Giorgilli A., Locatelli U., Sansottera M. Secular dynamics of a planar model of the Sun-JupiterSaturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories. Regular and Chaotic Dynamics. 2017. V. 22(1). P. 54–77.
- Perminov A.S., Kuznetsov E.D. The implementation of Hori–Deprit method to the construction averaged planetary motion theory by means of Computer Algebra System Piranha. Mathematics in Computer Science. 2020. V. 14. P. 305–316.
- Prokopenya A.N. Some symbolic computation algorithms in cosmic dynamics problems, Program. Comput. Software, 2006, vol. 32, no. 2, pp. 71–76
- . Prokopenya A.N. Symbolic Computation in Studying Stability of Solutions of Linear Differential Equations with Periodic Coefficients, Program. Comput. Software, 2007, vol. 33, no. 2, pp. 60–66
- Prokopenya A.N. Hamiltonian normalization in the restricted many-body problem by computer algebra methods, Program. Comput. Software, 2012, vol. 38, no. 3, pp. 156–169.
- Bruno A.D., Batkhin A.B. Survey of eight modern methods of Hamiltonian mechanics. Axioms. 2021. V. 10:293. P. 1–32.
- Gutnik S.A., Sarychev V.A. Symbolic-analytic methods for studying equilibrium orientations of a satellite on a circular orbit, Program. Comput. Software, 2021, vol. 47, no. 2, pp. 119–123.
- Gutnik S.A., Sarychev V.A. Symbolic methods for studying the equilibrium orientations of a system of two connected bodies in a circular orbit, Program. Comput. Software, 2022, vol. 48, no. 2, pp. 73–79.
- Omarov T.B. Non-Stationary Dynamical Problems in Astronomy. – Nova Science Publ., New York, 2002. 260 p.
- Bekov A.A., Omarov T.B. The theory of orbits in non-stationary stellar systems. Astronomical and Astrophysical Transactions. 2003. V. 22(2). P. 145–153.
- Eggleton P. Evolutionary processes in binary and multiple stars. – Cambridge University Press, Cambridge, 2006. 332 p.
- Veras D. Post-main-sequence planetary system evolution. Royal Society open science. 2016. V. 3. P. 150571.
- Berkovic L.M. Gylden-Mescerski problem. Celestial Mechanics. 1981. V. 24. P. 407–429.
- Minglibayev M.Zh. Dynamics of Gravitating Bodies with Variable Size and Mass, Lambert, 2012
- Minglibayev M.Zh., Mayemerova G.M. Evolution of the orbital-plane orientations in the two-protoplanet three-body problem with variable masses. Astronomy Reports. 2014. V. 58(9). P. 667–677.
- Prokopenya A.N., Minglibayev M.Zh., Mayemerova G.M. Symbolic calculations in studying the problem of three bodies with variable masses, Program. Comput. Software, 2014, vol. 40, no. 2, pp. 79–85
- Prokopenya A.N., Minglibayev M.Zh., Beketauov B.A. Secular perturbations of quasi-elliptic orbits in the restricted three-body problem with variable masses. International Journal of Non-Linear Mechanics. 2015. V. 73. P. 58–63.
- Prokopenya A.N., Minglibayev M.Zh., Mayemerova G.M., Imanova Zh.U. Investigation of the restricted problem of three bodies of variable masses using computer algebra, Program. Comput. Software, 2017, vol. 43, no. 5, pp. 289–293.
- Minglibayev M.Zh., Prokopenya A.N., Mayemerova G.M., Imanova Zh.U. Three-body problem with variable masses that change anisotropically at different rates. Mathematics in Computer Science. 2017. V. 11(3-4). P. 383–391.
- Prokopenya A.N., Minglibayev M.Zh., Shomshekova S.A. Applications of computer algebra in the study of the two-planet problem of three bodies with variable masses, Program. Comput. Software, 2019, vol. 45, no. 2, pp. 73–80.
- Minglibayev M.Zh., Kosherbayeva A.B. Differential equations of planetary systems. Reports of the National Academy of Sciences of the Republic of Kazakhstan. 2020. V. 2(330). P. 14–20.
- Ibraimova A.T., Minglibayev M.Zh., Prokopenya A.N. Study of secular perturbations in the restricted threebody problem of variable masses using computer algebra, Comput. Math. Math. Phys., 2023, vol. 63, no. 1, pp. 115–125
- Imanova Zh., Prokopenya A., Minglibayev M. Modeling the evolution of the two-planetary threebody system of variable masses. Mathematical Modelling and Analysis. 2023. V. 28(4). P. 636–652.
- Prokopenya A.N., Minglibayev M.Zh., Kosherbayeva A.B. Derivation of evolutionary equations in the manybody problem with isotropically varying masses using computer algebra, Program. Comput. Software, 2022, vol. 48, no. 2, pp. 107–115.
- Prokopenya A., Minglibayev M., Kosherbayeva A. Modeling the dynamics of a multi-planetary system with anysotropic mass variation. In: L. Franco et al. (Eds.): Computational Science – ICCS 2024. Lecture Notes in Computer Science, vol. 14836. Springer, Cham, 2024. P. 181–196.
- Wolfram S. An elementary introduction to the Wolfram Language. – Wolfram Media, Inc., 2016
Қосымша файлдар
