METHOD FOR CHECKING THE REGULARITY OF A SINGULAR POINT OF A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper proposes a program written in a symbolic computing package that allows one to check whether a singular point of a linear meromorphic system of arbitrary order is regular. The program is based on the known method for reducing this system by linear substitution to a linear differential equation with meromorphic coefficients.

About the authors

D. O. Ilyukhin

State Budgetary Educational Institution “Bauman Engineering School” № 1580

Moscow, Russia

A. V. Parusnikova

HSE University

Email: aparusnikova@hse.ru
Moscow, Russia

References

  1. Zoladek H. The monodromy group // Instytut matematyczny PAN. Basel: Birkhauser Verlag (2006).
  2. Moser J. The order of a singularity in Fuchs’ theory // Math Z. 1959. V. 72. P. 379–398.
  3. Barkatou A. A rational version of Moser’s algorithm // Proceedings of the 1995 international symposium on Symbolic and algebraic computation. April. 1995. P. 297–302.
  4. Bruno A.D. Meromorphic conductivity of a linear triangular system of ODEs, Dokl. Akad. Nauk, 2000, vol. 371, no. 5, pp. 587–590
  5. Vyugin I.V., Gontsov R.R. Additional parameters in inverse problems of monodromy, Sbornik: Mathematics, 2006, vol. 197, no. 12, pp. 1753–1773
  6. Ilyukhin D.O., Parusnikova A.V. Regularity criterion for linear systems of linear differential equations of small orders with meromorphic coefficients, Tr. Priokskoi nauchnoi konferentsii Differentsial’nye uravneniya i smezhnye voprosy matematiki (Proc. Priokskaya Sci. Conf. Differential Equations and Related Topics in Mathematics), 2019, pp. 65–73
  7. azov V. Asimptoticheskie razlozheniya reshenii obyknovennykh differentsial’nykh uravnenii (Asymptotic Expansions of Solutions of Ordinary Differential Equations), Moscow: Mir, 1968.
  8. Wolfram St. The Mathematica Book. Wolfram Media, Inc., 2003. 1488 p.
  9. Gromak V.I., Laine I., and Shimomura S. Painleve Differential Equations in the Complex Plane // De Gruyter Studies in Mathematics, vol. 28, Berlin, 2002.
  10. Lin Y., Dai D., Tibboel P. Existence and uniqueness of tronquee solutions of the third and fourth Painleve equations // Nonlinearity. 2014. Vol. 27. No. 2. P. 171–186.
  11. Parusnikova A.V., Vasilyev A.V. On the exact Gevrey order of formal Puiseux series solutions to the third Painleve equation // Journal of Dynamical and Control Systems. 2019. Vol. 25. No. 4. P. 681–690.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».