ПРИМЕНЕНИЕ ИМИТАЦИОННОГО КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ К ЗАДАЧЕ ОБЕЗЛИЧИВАНИЯ ПЕРСОНАЛЬНЫХ ДАННЫХ. МОДЕЛЬ И АЛГОРИТМ ОБЕЗЛИЧИВАНИЯ МЕТОДОМ СИНТЕЗА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлена вторая часть исследования, посвященного тематике автоматизированного обезличивания персональных данных. Обзор и анализ перспектив для исследований, выполненный ранее, здесь дополнен практическим результатом. Предложена модель процесса обезличивания, сводящая задачу обеспечения анонимности персональных данных к манипулированию выборками разнотипных случайных элементов. Соответственно, ключевой идеей преобразования данных для обеспечения их анонимности при условии сохранения полезности является применение метода синтеза, т.е. полной замены всех необезличенных данных синтетическими значениями. В предлагаемой модели выделен набор типов элементов, для которых предложены шаблоны синтеза. Совокупность шаблонов составляет алгоритм обезличивания методом синтеза. Методически каждый шаблон опирается на типовой статистический инструмент – частотные оценки вероятностей, ядерные оценки плотностей Розенблатта–Парзена, статистические средние и ковариации. Применение алгоритма иллюстрируется простым примером из области гражданских авиаперевозок.

Об авторах

А. В. Борисов

Федеральный исследовательский центр “Информатика и управление” РАН

Автор, ответственный за переписку.
Email: aborisov@ipiran.ru
Россия, 119333, Москва, ул. Вавилова, д. 44, кор. 2

А. В. Босов

Федеральный исследовательский центр “Информатика и управление” РАН

Автор, ответственный за переписку.
Email: avbosov@ipiran.ru
Россия, 119333, Москва, ул. Вавилова, д. 44, кор. 2

А. В. Иванов

Федеральный исследовательский центр “Информатика и управление” РАН

Автор, ответственный за переписку.
Email: aivanov@ipiran.ru
Россия, 119333, Москва, ул. Вавилова, д. 44, кор. 2

Список литературы

  1. Борисов А.В., Босов А.В., Иванов А.В. Применение имитационного компьютерного моделирования к задаче обезличивания персональных данных. Оценка состояния и основные положения // Программирование, 2023. № 4, с. 58–74.
  2. Aggarwal C.C., Yu P.S. On Privacy-Preservation of Text and Sparse Binary Data with Sketches // SIAM Conference on Data Mining, 2007.
  3. Sweeney L. K-anonymity: a model for protecting privacy // International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002. V. 10. № 5. P. 557–570.
  4. Samarati P., Sweeney L. Generalizing Data to Provide Anonymity when Disclosing Information (Abstract) // Proc. of ACM Symposium on Principles of Database Systems, 1998. P. 188.
  5. Samarati P. Protecting Respondents’ Identities in Microdata Release // IEEE Trans. Knowl. Data Eng., 2001. V. 13. № 6. P. 1010–1027.
  6. Bayardo R.J., Agrawal R. Data Privacy through Optimal k-Anonymization // Proceedings of the ICDE Conference, 2005. P. 217–228.
  7. Fung B., Wang K., Yu P. Top-Down Specialization for Information and Privacy Preservation // ICDE Conference, 2005.
  8. Wang K., Yu P., Chakraborty S. Bottom-Up Generalization: A Data Mining Solution to Privacy Protection // ICDM Conference, 2004.
  9. Domingo-Ferrer J., Mateo-Sanz J. Practical data-oriented micro-aggregation for statistical disclosure control // IEEE TKDE, 2002. V. 14. № 1.
  10. Winkler W. Using simulated annealing for k-anonymity // Technical Report 7, US Census Bureau, Washington D.C. 20233, 2002.
  11. Iyengar V.S. Transforming Data to Satisfy Privacy Constraints // KDD Conference, 2002.
  12. Lakshmanan L., Ng R., Ramesh G. To Do or Not To Do: The Dilemma of Disclosing Anonymized Data // ACM SIGMOD Conference, 2005.
  13. Aggarwal C.C., Yu P.S. On Variable Constraints in Privacy-Preserving Data Mining // SIAM Conference, 2005.
  14. Aggarwal C.C. On k-anonymity and the curse of dimensionality // VLDB Conference, 2005.
  15. Iyengar V.S. Transforming Data to Satisfy Privacy Constraints // KDD Conference, 2002.
  16. Machanavajjhala A., Gehrke J., Kifer D., Venkitasubramaniam M. L-Diversity: Privacy Beyond k-Anonymity // ICDE Conference, 2006.
  17. Fung B., Wang K., Yu P. Top-Down Specialization for Information and Privacy Preservation // ICDE Conference, 2005.
  18. Wang K., Yu P., Chakraborty S. Bottom-Up Generalization: A Data Mining Solution to Privacy Protection // ICDM Conference, 2004.
  19. Rosenblatt M. Remarks on Some Nonparametric Estimates of a Density Function // Ann. Math. Statist., 1956. V. 27. № 3. P. 832–837.
  20. Parzen E. On Estimation of a Probability Density Function and Mode // Ann. Math. Statist., 1962. V. 33. № 3. P. 1065–1076.
  21. Silverman B.W. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall/CRC, 1986.
  22. Kullback S., Leibler R.A. On information and sufficiency // Ann. Math. Statist., 1951. V. 22. № 1. P. 79–86.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (47KB)
3.

Скачать (206KB)

© А.В. Борисов, А.В. Босов, А.В. Иванов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».