Design of an unsymmetrical PCN nickel(II) pincer complex based on 2,3,4,5-tetraphenyl-1-monophosphole
- 作者: Mikhailov I.K.1, Gafurov Z.N.1, Kagilev A.A.1, Kantyukov A.O.1,2, Sakhapov I.F.1, Zueva E.M.3, Zagidullin A.A.1, Sinyashin O.G.1, Yakhvarov D.G.2
-
隶属关系:
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Alexander Butlerov Institute of Chemistry, Kazan Federal University
- Department of Inorganic Chemistry, Kazan National Research Technological Universit, Kazan, Russia
- 期: 卷 51, 编号 8 (2025)
- 页面: 501-509
- 栏目: Articles
- URL: https://journals.rcsi.science/0132-344X/article/view/306953
- DOI: https://doi.org/10.31857/S0132344X25080024
- EDN: https://elibrary.ru/lfazmm
- ID: 306953
如何引用文章
详细
A new unsymmetrical PCN pincer ligand, N-ethyl-N-(3-((2,3,4,5-tetraphenyl-1H-phosphol-1-yl)methyl)benzyl)ethanamine, combining different donors (amine and phosphole groups), has been synthesized. The ligand was obtained in four steps with a good overall yield (49%), using commercially available reagents as starting materials. Based on the obtained ligand, a design of an unsymmetrical nickel(II) pincer complex was proposed. Quantum-chemical calculations of the molecular structure of the complex show the formation of weak Ni–P bonds and the manifestation of a weak trans-influence of the phosphole group with respect to the amine group, which distinguishes this complex from its analogs, PCN complexes based on dialkylphosphines.
作者简介
I. Mikhailov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: gafurov.zufar@iopc.ru
俄罗斯联邦, Kazan
Z. Gafurov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: gafurov.zufar@iopc.ru
俄罗斯联邦, Kazan
A. Kagilev
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: gafurov.zufar@iopc.ru
俄罗斯联邦, Kazan
A. Kantyukov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Alexander Butlerov Institute of Chemistry, Kazan Federal University
Email: gafurov.zufar@iopc.ru
俄罗斯联邦, Kazan; Kazan
I. Sakhapov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: gafurov.zufar@iopc.ru
俄罗斯联邦, Kazan
E. Zueva
Department of Inorganic Chemistry, Kazan National Research Technological Universit, Kazan, Russia
Email: gafurov.zufar@iopc.ru
俄罗斯联邦, Kazan
A. Zagidullin
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: gafurov.zufar@iopc.ru
俄罗斯联邦, Kazan
O. Sinyashin
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: gafurov.zufar@iopc.ru
俄罗斯联邦, Kazan
D. Yakhvarov
Alexander Butlerov Institute of Chemistry, Kazan Federal University
编辑信件的主要联系方式.
Email: yakhvar@iopc.ru
俄罗斯联邦, Kazan
参考
- Dongbang S. // Organometallics 2024. V. 43. № 16. P. 1662. https://doi.org/10.1021/acs.organomet.3c00537
- Kitos A.A., Mavragani N., Murugesu M. et al. // Mater. Adv. 2020. V. 1. № 8. P. 2688. https://doi.org/10.1039/d0ma00720j
- Komuro T., Nakajima Y., Takaya J. et al. // Coord. Chem. Rev. 2022. V. 473. P. 214837. https://doi.org/10.1016/j.ccr.2022.214837
- Denny J.A., Lang G.M., Autry S. et al. // J. Organomet. Chem. 2025. V. 1023. P. 123419. https://doi.org/10.1016/j.jorganchem.2024.123419
- Li H., Zhang B., Feng R. et al. // Dalton Trans. 2024. V. 53. № 27. P. 11470. https://doi.org/10.1039/d4dt00980k
- Esteruelas M.A., Moreno-Blázquez S., Oliván M. et al. // Inorg. Chem. 2023. V. 62. № 26. P. 10152. https://doi.org/10.1021/acs.inorgchem.3c00694
- Pranesh Kavin S., Ramesh R. // Dalton Trans. 2023. V. 52. № 29. P. 10038. https://doi.org/10.1039/d3dt01628e
- Kasera A., Biswas J.P., Ali Alshehri A. et al. // Coord. Chem. Rev. 2023. V. 475. P. 214915. https://doi.org/10.1016/j.ccr.2022.214915
- Гафуров З.Н., Михайлов И.К., Кагилев А.А. и др. // Коорд. химия. 2024. Т. 50. № 10. С. 769 (Gafurov Z.N., Mikhailov I.K., Kagilev A.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 10. P. 769). https://doi.org/10.1134/S1070328424601092
- Гафуров З.Н., Михайлов И.К., Кагилев А.А. и др. // Изв. АН. Cер. хим. 2024. Т. 73. № 11. С. 3259 (Gafurov Z.N., Mikhailov I.K., Kagilev A.A. et al. // Russ. Chem. Bull. 2024. V. 73. № 11. P. 3259). https://doi.org/10.1007/s11172-024-4441-1
- Roque-Ramires M.A., Restrepo-Acevedo A.C., Cuenú-Cabezas F. et al. // Appl. Organomet. Chem. 2024. V. 38. № 11. https://doi.org/10.1002/aoc.7648
- Sekar P.K., Rengan R., Sundarraman B. // J. Org. Chem. 2024. V. 89. № 16. P. 11161. https://doi.org/10.1021/acs.joc.4c00621
- Zhu S., Wu W., Hong D. et al. // Inorg. Chem. 2024. V. 63. № 32. P. 14860. https://doi.org/10.1021/acs.inorgchem.4c00981
- Biswas N., Gelman D. // ACS Catal. 2024. V. 14. № 3. P. 1629. https://doi.org/10.1021/acscatal.3c05062
- Tomsu G., Stöger B., Kirchner K. // Monatsh. Chem. 2024. V. 155. № 2. P. 173. https://doi.org/10.1007/s00706-024-03171-x
- Schratzberger H., Himmelbauer D., Eder W. et al. // Monatsh. Chem. 2023. V. 154. № 11. P. 1253. https://doi.org/10.1007/s00706-023-03123-x
- Tomsu G., Stöger B., Kirchner K. // Organometallics. 2023. V. 42. № 20. P. 2999. https://doi.org/10.1021/acs.organomet.3c00327
- Schratzberger H., Liebminger L.A., Stöger B. et al. // Dalton Trans. 2023. V. 52. № 35. P. 12410. https://doi.org/10.1039/d3dt02111d
- Pelczar E.M., Emge T.J., Krogh-Jespersen K. et al. // Organometallics. 2008. V. 27. № 22. P. 5759. https://doi.org/10.1021/om800425p
- Lee B., Pabst T.P., Hierlmeier G. et al. // Organometallics. 2023. V. 42. № 8. P. 708. https://doi.org/10.1021/acs.organomet.3c00079
- Pandey B., Krause J.A., Guan H. // Inorg. Chem. 2023. V. 62. № 2. P. 967. https://doi.org/10.1021/acs.inorgchem.2c03803
- Roşca D.A., Regenauer N.I., Wadepohl H. // Inorg. Chem. 2022. V. 61. № 19. P. 7426. https://doi.org/10.1021/ACS.INORGCHEM.2C00459
- Stadler B., Meng H.H.Y., Belazregue S. et al. // Organometallics. 2023. V. 42. № 12. P. 1278. https://doi.org/10.1021/acs.organomet.2c00662
- Cruz-Navarro J.A., Sánchez-Mora A., Serrano-García J.S. et al. // Catalysts. 2024. V. 14. № 1. P. 69. https://doi.org/10.3390/catal14010069
- Singh V., Jain H., Nath S. et al. // Chem. Eur. J. 2024. V. 30. № 9. E202303189. https://doi.org/10.1002/chem.202303189
- González-Sebastián L., Reyes-Sanchez A., Morales-Morales D. // Organometallics. 2023. V. 42. № 18. P. 2426. https://doi.org/10.1021/acs.organomet.3c00261
- Panicker R.R., Vijai Anand A.S., Boominathan T. et al. // Inorg. Chim. Acta. 2024. V. 571. P. 122210. https://doi.org/10.1016/j.ica.2024.122210
- Jakhar V.K., Shen Y.H., Hyun S.M. et al. // Organometallics. 2023. V. 42. № 12. P. 1339. https://doi.org/10.1021/acs.organomet.3c00060
- Dinda S., Bhola T., Pant S. et al. // J. Catal. 2024. V. 439. P. 115766. https://doi.org/10.1016/j.jcat.2024.115766
- Goswami B., Khatua M., Samanta S. // Dalton Trans. 2022. V. 51. № 4. P. 1454. https://doi.org/10.1039/d1dt02622d
- Ge L., Li T., Duan Y. et al. // Appl. Organomet. Chem. 2024. V. 39. № 2. https://doi.org/10.1002/aoc.7825
- Schratzberger H., Kirchner K. // ChemCatChem. 2024. V. 17. № 2. https://doi.org/10.1002/cctc.202401398
- Dong Y., Zhang M., Li X. et al. // Appl. Organomet. Chem. 2024. V. 39. № 1. https://doi.org/10.1002/aoc.7790
- Kumar A., Gupta R., Mani G. // Organometallics. 2023. V. 42. № 8. P. 732. https://doi.org/10.1021/acs.organomet.3c00106
- Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Molecules. 2021. V. 26. № 13. P. 4063. https://doi.org/10.3390/molecules26134063
- Bailey W.D., Luconi L., Rossin A. et al. // Organometallics. 2015. V. 34. № 16. P. 3998. https://doi.org/10.1021/acs.organomet.5b00355
- Mousa A.H., Bendix J., Wendt O.F. // Organometallics. 2018. V. 37. № 15. P. 2581. https://doi.org/10.1021/acs.organomet.8b00333
- Moulton C.J., Shaw B.L. // Dalton Trans. 1976. V. 0. № 11. P. 1020. https://doi.org/10.1039/DT9760001020
- Boro B.J., Dickie D.A., Goldberg K.I. et al. // Acta Crystallogr. E. 2008. V. 64. № 10. P. M1304. https://doi.org/10.1107/S1600536808029814
- Spasyuk D.M., Zargarian D., Van Der Est A. // Organometallics. 2009. V. 28. № 22. P. 6531. https://doi.org/10.1021/om900751f
- Pandarus V., Zargarian D. // Organometallics. 2007. V. 26. № 17. P. 4321. https://doi.org/10.1021/om700400x
- Luconi L., Gafurov Z., Rossin A. et al. // Inorg. Chim. Acta. 2018. V. 470. P. 100. https://doi.org/10.1016/j.ica.2017.03.026
- Luconi L., Garino C., Cerreia Vioglio P. et al. // ACS Omega. 2019. V. 4. № 1. P. 1118. https://doi.org/10.1021/acsomega.8b02452
- Luconi L., Tuci G., Gafurov Z.N. et al. // Inorg. Chim. Acta. 2020. V. 517. P. 120182. https://doi.org/10.1016/j.ica.2020.120182
- Gafurov Z.N., Bekmukhamedov G.E., Kagilev A.A. et al. // J. Organomet. Chem. 2020. V. 912. P. 121163. https://doi.org/10.1016/j.jorganchem.2020.121163
- Gafurov Z.N., Zueva E.M., Bekmukhamedov G.E. et al. // J. Organomet. Chem. 2021. V. 949. P. 121951. https://doi.org/10.1016/j.jorganchem.2021.121951
- Mikhailov I.K., Gafurov Z.N., Kagilev A.A. et al. // Catalysts. 2023. V. 13. № 9. P. 1291. https://doi.org/10.3390/catal13091291
- Mikhailov I.K., Gafurov Z.N., Kagilev A.A. et al. // Appl. Magn. Reson. 2024. V. 55. № 10. P. 1323. https://doi.org/10.1007/s00723-024-01710-7
- Kagilev A.A., Gafurov Z.N., Sakhapov I.F. et al. // J. Electroanal. Chem. 2024. V. 956. P. 118084. https://doi.org/10.1016/j.jelechem.2024.118084
- Kagilev A.A., Gafurov Z.N., Kantyukov A.O. et al. // J. Solid State Electrochem. 2024. V. 28. № 3–4. P. 897. https://doi.org/10.1007/s10008-023-05765-7
- Gafurov Z.N., Mikhailov I.K., Kagilev A.A. et al. // Inorg. Chim. Acta. 2025. V. 578. P. 122522. https://doi.org/10.1016/j.ica.2024.122522
- Holah D.G., Hughes A.N., Hui B.C. et al. // J. He- terocycl. Chem. 1978. V. 15. № 1. P. 89. https://doi.org/10.1002/jhet.5570150119
- Zagidullin A.A., Bezkishko I.A., Miluykov V.A. et al. // Mendeleev Commun. 2013. V. 23. № 3. P. 117. https://doi.org/10.1016/j.mencom.2013.05.001
- Armarego W.L.F. Purification of Laboratory Chemicals. 8th Ed. Amsterdam: Butterworth-Heinemann, 2017.
- Zagidullin A., Grigoreva E., Burganov T. et al. // Inorg. Chem. Commun. 2021. V. 134. P. 108949. https://doi.org/10.1016/j.inoche.2021.108949
- Stavrakov G., Philipova I., Lukarski A. et al. // Molecules. 2020. V. 25. № 15. P. 3341. https://doi.org/10.3390/molecules25153341
- Poverenov E., Gandelman M., Shimon L.J.W. et al. // Organometallics. 2005. V. 24. № 6. P. 1082. https://doi.org/10.1021/om049182m
- Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
- Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. № 45. P. 11623. https://doi.org/10.1021/j100096a001
- Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007. https://doi.org/10.1063/1.456153
- Woon D.E., Dunning T.H. // J. Chem. Phys. 1993. V. 98. № 2. P. 1358. https://doi.org/10.1063/1.464303
- Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018. V. 8. № 1. P. E1327. https://doi.org/10.1002/wcms.1327
- Fleckhaus A., Mousa A.H., Lawal N.S. et al. // Organometallics. 2015. V. 34. № 9. P. 1627. https://doi.org/10.1021/om501231k
- Schoeder C.T., Meyer A., Mahardhika A.B. et al. // ACS Omega. 2019. V. 4. № 2. P. 4276. https://doi.org/10.1021/acsomega.8b03695
- Xi H.T., Zhao T., Sun X.Q. et al. // RSC Adv. 2013. V. 3. № 3. P. 691. https://doi.org/10.1039/c2ra22802e
- Oshchepkova E., Zagidullin A., Burganov T. et al. // Dalton Trans. 2018. V. 47. № 33. P. 11521. https://doi.org/10.1039/c8dt02208a
- Melaimi M., Thoumazet C., Ricard L. et al. // J. Organomet. Chem. 2004. V. 689. № 19. P. 2988. https://doi.org/10.1016/j.jorganchem.2004.06.035
- Budnikova Y.H., Perichon J., Yakhvarov D.G. et al. // J. Organomet. Chem. 2001. V. 630. № 2. P. 185. https://doi.org/10.1016/S0022-328X(01)00813-0
- Kumar S., Kumar S., Maity J. et al. // New J. Chem. 2021. V. 45. № 36. P. 16635. https://doi.org/10.1039/d1nj02423j
- Zagidullin A.A., Lakomkina A.R., Gerasimova T.P. et al. // J. Organomet. Chem. 2024. V. 1013. P. 123163. https://doi.org/10.1016/j.jorganchem.2024.123163
- Гафуров З.Н., Кагилев А.А., Кантюков А.О. и др. // Изв. АН. Сер. хим.. 2018. Т. 67. № 3. С. 385 (Gafurov Z.N., Kagilev A.A., Kantyukov A.O. et al. // Russ. Chem. Bull. 2018. V. 67. № 3. P. 385). https://doi.org/10.1007/s11172-018-2086-7
- Doherty S., Robins E.G., Knight J.G. et al. // J. Organomet. Chem. 2001. V. 640. № 1–2. P. 182. https://doi.org/10.1016/S0022-328X(01)01180-9
补充文件
