Heteroleptic Metal-Organic Frameworks of Lanthanides (Lа, Ce, and Ho) Based on Ligands of the Anilate Type and Dicarboxylic Acids

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

New heteroleptic metal-organic frameworks of lanthanides, units of which contain anionic organic ligands of two types, are prepared by the solvothermal synthesis in N,N-dimethylformamide (DMF). The cross-linked coordination polymer [Ho2(CA)2(Bdc)·4DMF] (I) and two scaffold derivatives [La2(pQ)2(Bpdc)·4DMF] (II) and [Ce2(CA)(Bdc)2·4DMF]·2DMF (III·2DMF), where CA is chloranilic acid dianion, pQ is 2,5-dihydroxy-3,6-di-tert-butyl-para-benzoquinone dianion, Bdc is terephthalic acid dianion, and Bpdc is 4,4'-biphenyldicarboxylic acid dianion, are synthesized. The structures of compounds I, II, and III·2DMF are studied by X-ray diffraction (XRD) (CIF file CCDC nos. 2212230, 2212231, and 2212232, respectively).

作者简介

O. Trofimova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: pial@iomc.ras.ru
Россия, Нижний Новгород

A. Maleeva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: pial@iomc.ras.ru
Россия, Нижний Новгород

K. Arsen’eva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: pial@iomc.ras.ru
Россия, Нижний Новгород

A. Klimashevskaya

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: pial@iomc.ras.ru
Россия, Нижний Новгород

A. Cherkasov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: pial@iomc.ras.ru
Россия, Нижний Новгород

A. Piskunov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

编辑信件的主要联系方式.
Email: pial@iomc.ras.ru
Россия, Нижний Новгород

参考

  1. Коваленко К.А., Потапов А.С., Федин В.П. // Успехи химии. 2022. Т. 91. № 4. RCR5026 (Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. RCR5026). https://doi.org/10.1070/RCR5026
  2. Агафонов М.А., Александров Е.В., Артюхова Н.А. и др. // Журн. структур. химии. 2022. Т. 63. № 5. С. 535. https://doi.org/10.26902/JSC_id93211
  3. Monni N., Oggianu M., Sahadevan S.A. et al. // Magnetochemistry. 2021. V. 7. P. 109.
  4. Benmansour S., Gómez-García C.J. // Magnetochemistry. 2020. V. 6. P. 71.
  5. Liu K.-G., Sharifzadeh Z., Rouhani F. et al. // Coord. Chem. Rev. 2021. V. 436. P. 213827.
  6. Wang C., Liao K. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 56752.
  7. Fasna F., Sasi S. // ChemSelect. 2021. V. 6. P. 6365.
  8. Антипин И.С., Алфимов М.В., Арсланов В.В. и др. // Успехи химии. 2021. Т. 90. № 8. С. 895 (Antipin I.S., Burilov V.A., Gorbatchuk V.V. et al. // Russ. Chem. Rev. 2021. V. 90. P. 895). https://doi.org/10.1070/RCR5011
  9. Kitagawa S., Matsuda R. // Coord. Chem. Rev. 2007. V. 251. P. 2490.
  10. Kingsbury C.J., Abrahams B.F., Auckett J.E. et al. // Chem. Eur. J. 2019. V. 25. P. 5222.
  11. Abrahams B.F., Dharma A.D., Dyett B. et al. // Dalton Trans. 2016. V. 45. P. 1339.
  12. Adil K., Belmabkhout Y., Pillai R. S. et al. // Chem. Soc. Rev. 2017. V. 46. P. 3402.
  13. Ezugwu C.I., Liu S., Li C. et al. // Coord. Chem. Rev. 2021. V. 450. P. 214245.
  14. Hu Z., Zhao D. // CrystEngComm. 2017. V. 19. P. 4066.
  15. Huangfu M., Wang M., Lin C. et al. // Dalton Trans. 2021. V. 50. P. 3429.
  16. Li P., Zhou Z., Zhao Y.S. et al. // Chem. Commun. 2021. V. 57. P. 13678.
  17. Wang Y., Liu X., Li X. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 8030.
  18. Chang C.-H., Li A.-C., Popovs I. et al. // J. Mater. Chem. A. 2019. V. 7. P. 23770.
  19. Calbo J., Golomb M.J., Walsh A. // J. Mater. Chem. A. 2019. V. 7. P. 16571.
  20. Wang M., Dong R., Feng X. // Chem. Soc. Rev. 2021. V. 50. P. 2764.
  21. Dong R., Feng X. // Nature Materials. 2021. V. 20. P. 122.
  22. Benmansour S., Gómez-García C.J. // Gen. Chem. 2020. V. 6. P. 190033.
  23. Espallargas G.M., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533.
  24. Sahadevan S.A., Manna F., Abhervé A. et al. // Inorg. Chem. 2021. V. 60. P. 17765.
  25. Trofimova O., Maleeva A.V., Ershova I.V. et al. // Molecules. 2021. V. 26. P. 2486.
  26. Sahadevan S.A., Monni N., Oggianu M. et al. // ACS Appl. Nano Mater. 2020. V. 3. P. 94.
  27. Lysova A.A., Kovalenko K.A., Dybtsev D.N. et al. // Microporous Mesoporous Mater. 2021. V. 328. Art. 111477.
  28. Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 20561.
  29. Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
  30. Trofimova O.Y., Maleeva A.V., Arsenyeva K.V. et al. // Crystals. 2022. V. 12. P. 370.
  31. Трофимова О.Ю., Ершова И.В., Малеева А.В. и др. // Коорд. химия. 2021. Т. 47. № 9. С. 552 (Tro-fimova O.Y., Ershova I.V., Maleeva A.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 610). https://doi.org/10.1134/S1070328421090086
  32. Kharitonov A.D., Trofimova O.Y., Meshcheryakova I.N. et al. // CrystEngComm. 2020. V. 22. P. 4675.
  33. Хамалетдинова Н.М., Мещерякова И.Н., Пискунов А.В. и др. // Журн. cтруктур. химии. 2015. Т. 56. № 2. С. 249 (Khamaletdinova N.M., Meshcheryakova I.N., Piskunov A.V. et al. // J. Struct. Сhem. 2015. V. 56. P. 233). https://doi.org/10.1134/S0022476615020055
  34. APEX3. Madison (WI, USA): Bruker AXS Inc., 2018.
  35. Rigaku Oxford Diffraction. CrysAlisPro Software System. Version 1.171.38.46. Wroclaw (Poland): Rigaku Corporation, 2015.
  36. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Cryst. 2015. V. 48. P. 3.
  37. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  38. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  39. Benmansour S., Gómez-García C.J., Hernández-Paredes A. // Crystals. 2022. V. 12. P. 261.
  40. Benmansour S., López-Martínez G., Canet-Ferrer J. et al. // Magnetochemistry. 2016. V. 2. P. 32.
  41. Dubraja L.A., Molcanov K., Zilic D. et al. // New J. Chem. 2017. V. 41. P. 6785.
  42. Vuković V., Molčanov K.I., Jelsch C. et al. // Cryst. Growth Des. 2019. V. 19. P. 2802.
  43. Cao H.-Y., Liu Q.-Y., Gao M.-J. et al. // Inorg. Chim. Acta. 2014. V. 414. P. 226.
  44. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576.
  45. Alexandrov E.V., Blatov V.A., Kochetkov A.V. et al. // CrystEngComm. 2011. V. 13. P. 3947.
  46. Александров Е.В., Шевченко А.П., Некрасова Н.А. et al. // Успехи химии. 2022. Т. 91. RCR5032 (Aleksandrov E.V., Shevchenko A.P., Nekrasova N.A. et al. // Russ. Chem. Rev. 2022. V. 91. RCR5032). https://doi.org/10.1070/RCR5032
  47. Alvarez S., Alemany P., Casanova D. et al. // Coord. Chem. Rev. 2005. V. 249. P. 1693.
  48. Llunell M., Casanova D., Cirera J. et al. // Universitat de Barcelona. 2013.
  49. Ruiz-Martinez A., Casanova D., Alvarez S. // Chem. Eur. J. 2008. V. 14. P. 1291.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (259KB)
3.

下载 (251KB)
4.

下载 (359KB)
5.

下载 (226KB)
6.

下载 (590KB)
7.

下载 (560KB)
8.

下载 (25KB)
9.

下载 (36KB)
10.

下载 (471KB)
11.

下载 (455KB)
12.

下载 (33KB)


##common.cookie##