Copper(II) and Zinc(II) Complexes with Heterocyclic Acid Anions and 3,5-Dimethylpyrazole: Synthesis, Structure, and Biological Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of copper(II) and zinc(II) acetates with 3-furancarboxylic (HFur) and 2-thiophenecarboxylic (HTph) acids with subsequent addition of 3,5-dimethylpyrazole (HDmpz) gave mononuclear complexes [M(L)2(HDmpz)2] (M = Cu(II), L = Fur– (I), Tph– (II); Zn(II), L = Fur– (III)). The structures of compounds I–III were determined by X-ray diffraction. According to X-ray diffraction data, I and II are isostructural: the central Cu(II) atom occurs in a square planar environment formed by two oxygen atoms of carboxylate anions and HDmpz nitrogen atoms; in III, the Zn atom is in the tetrahedral environment of two furoate anions and HDmpz molecules, thus forming the {MO2N2} groups. The complexes are additionally stabilized in the crystal by inter- (I and II) and intramolecular (III) hydrogen bonds. The biological activity of I–III was determined in relation to the non-pathogenic Mycolicibacterium smegmatis.

About the authors

M. A. Uvarova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

M. V. Novikova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва; Россия, Москва

V. A. Eliseenkova

School no. 1553 named after Vernadsky, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

D. E. Baravikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва; Россия, Москва

F. M. Dolgushin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: fmdolgushin@gmail.com
Россия, Москва

O. B. Bekker

Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

E. V. Fatushina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

I. A. Lutsenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: yak_marin@mail.ru
Россия, Москва

References

  1. Goodwin L. // Trop. Med. Hyg. 1995. V. 89. № 3. P. 339.
  2. Ngwane A.H., Petersen R.D., Baker B. et al. // IUBMB Life. 2019. V. 71. № 5. P. 532.
  3. Chen Z.F., Orvig C., Liang H. // Curr. Top. Med. Chem. 2017. V. 17. № 28. P. 3131.
  4. Chaudhary A., Jha K., Kumar S. // J. Adv. Res. 2012. V. 3. № 3. P. 3.
  5. Lukevits É., Demicheva L. // Chem. Heterocycl. Co-mpd. 1993. V. 29. P. 243.
  6. Машковский М.Д. Лекарственные средства. М.: Медицина. 2000. Т. 1. 736 с.
  7. Kuchtanin V., Moncol J., Mroziński J. // Polyhedron. 2013. V. 50. № 1. P. 546.
  8. Panagoulis D.E. Pontiki E., Skeva C. et al. // Inorg. Chem. 2007. V. 101. P. 623.
  9. Zheng X.F., Zhou Y.X., Wan X.S. // Inorg. Met.-Org. Nano-Met. Chem. 2007. V. 37. P. 255.
  10. Horn E., Kurosawa K., Tamura H., Nakahodo T. // Z. Krist. New. Cryst. Struct. 2001. V. 216. P. 77.
  11. Melnic S., Prodius D., Stoeckli-Evans H. et al. // Eur. J. Med. Chem. 2010. V. 45. P. 1465.
  12. Луценко И.А., Баравиков Д.Е., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 6. С. 366 (Lutsenko I.A., Kiskin M.A., Nelyubina Y.V. et al. // Russ. J. Coord. Chem. 2020. Т. 46. № 6. P. 411). https://doi.org/10.1134/S1070328420060056
  13. Луценко И.А., Ямбулатов Д.С., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 12. С. 715 (Lutsenko I.A., Yambulatov D.S., Kiskin M.A. // Russ. J. Coord. Chem. 2020. Т. 46. № 12. P. 787). https://doi.org/10.1134/S1070328420120040
  14. Lutsenko I.A., Yambulatov D.S., Kiskin M.A. et al. // ChemSelect. 2020. V. 5. № 38. P. 11837.
  15. Луценко И.А., Кискин М.А., Кошенскова К.А. и др. // Изв. АН. Сер. хим. 2021. № 3. С. 463 (Lutsenko I.A., Kiskin M.A., Koshenskova K.A. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. P. 463). https://doi.org/10.1007/s11172-021-3109-3
  16. Uvarova M.A., Lutsenko I.A., Kiskin M.A. et al. // Polyhedron. 2021. V. 203. P. 115241. https://doi.org/10.1016/j.poly.2021.115241
  17. Луценко И.А., Никифорова М.Е., Кошенскова К.А. и др. // Коорд. химия. 2022. Т. 48. № 2. С. 83 (Lutsenko I.A., Nikiforova M.E., Koshenskova K.A. et.al. // Russ. J. Coord. Chem. 2021. V. 47. P. 879). https://doi.org/10.1134/S1070328421350013
  18. Lutsenko I.A., Baravikov D.E., Koshenskova K.A. et al. // RSC Adv. 2022. V. 12. P. 5173.
  19. Кошенскова К.А., Луценко И.А., Нелюбина Ю.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1398 (Koshenskova K.A., Lutsenko I.A., Nelyubina Y.V. et al. // Russ. J. Inorg. Chem. V. 67. № 10. P. 1545). https://doi.org/10.1134/S003602362270005X
  20. Ansari A., Ali A., Asif M., Shamsuzzaman S. // New J. Chem. 2017. V. 41. № 1. P. 16.
  21. Xu Z., Gao C., Ren Q.C., Song X.F. et al. // Eur. J. Med. Chem. 2017. V. 139. P. 429.
  22. Karrouchi K., Radi S., Ramli Y. et al. // Molecules. 2018. V. 23. № 1. P. 134.
  23. Azam M., Mohammad Wabaidur S., Alam M. // Polyhedron. 2021. V. 195. P. 114991.
  24. Solanki A., Kumar S.B., Doshi A.A., Ratna Prabha C. // Polyhedron. 2013. V. 63. P. 147.
  25. Уварова М.А., Нефедов С.Е. // Коорд. химия. 2020. Т. 46. № 2. С. 117 (Uvarova M.A., Nefedov S.E. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 125). https://doi.org/10.1134/S1070328420020062
  26. Уварова М.А., Нефедов С.Е. // Журн. неорган. химии. 2015. Т. 60. № 9. С. 1181 (Uvarova M.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2015. V. 60. № 9. P. 1074). https://doi.org/10.1134/S003602361509020X
  27. Уварова М.А., Кушан Е.В., Нефедов С.Е. // Журн. неорган. химии. 2012. Т. 57. № 5. С. 744 (Uvarova M.A., Kushan E.V., Nefedov S.E. // Russ. J. Inorg. Chem. 2012. V. 57. № 5. С. 676). https://doi.org/10.1134/S0036023612050245
  28. Уварова М.А., Нефедов С.Е. // Коорд. химия. 2022. Т. 48. № 9. С. 543 (Uvarova M.A., Nefedov S.E. // Russ. J. Coord. Chem. 2022. V. 48. P. 565). https://doi.org/10.1134/S107032842209007X
  29. Uvarova M.A., Nefedov S.E. // Russ. J. Coord. Chem. 2022. T. 48. № 12. C. 909.
  30. Yuan Lu, Weiqiang Xu, Kaikai Hu et al. // Polyhedron. 2019. V. 159. P. 408.
  31. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  32. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  33. Dolomanov O.V., Bourhis L.J., Gildea R.J et al. // J. Ap-pl. Cryst. 2009. V. 42. P. 339.
  34. Kaikai H., Shouwen J., Zuoran Xie, Ming G. et al. // Polyhedron. 2018. V. 139. P. 17.
  35. Ramon-García S., Ng C., Anderson H. et al. // Antimicrob. Agents Chemother. 2011. V. 8. P. 3861.
  36. Bekker O.B., Sokolov D.N., Luzina O.A. et al. // Med. Chem. Res. 2015. V. 24. P. 2926.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (38KB)
3.

Download (435KB)
4.

Download (556KB)
5.

Download (378KB)
6.

Download (479KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies