Synthesis, structure, optical, and electrochemical properties of the chromophore cyclometalated iridium(III) complex

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new N-donor ligand, methyl 4-(1-methyl-1H-perimidin-2-yl)nicotinate, and the corresponding octahedral cationic iridium(III) complex (1) were designed and synthesized. 1-Benzyl-2-phenyl[2,3]naphthimidazole was used as a cyclometalated ligand; PF6 served as a counterion. Compound 1 was characterized by 1H, 13C, 19F, 31P, 1H,1H-COSY, 1H,1H-NOESY NMR, high-resolution mass spectrometry and X-ray diffraction. As a result of the combination of ligands containing a large conjugated system around the metal ion, the target complex exhibits light absorption up to 700 nm (ε ~ 1000 M–1cm–1), translating in its deep color. Complex 1 demonstrates reversible electrochemical behavior at positive potentials with E1/2 = 0.58 V vs. EFc+/Fc. In terms of the key characteristics, the resulting compound surpasses most iridium analogs, and therefore appears promising for further testing in photovoltaic devices.

About the authors

D. E. Smirnov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bezzubov@igic.ras.ru
Russian Federation, Moscow, Russia

S. I. Bezzubov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: bezzubov@igic.ras.ru
Russian Federation, Moscow, Russia

References

  1. Tritton D.N., Tang F.-K., Bodedla G.B. et al. // Coord. Chem. Rev. 2022. V. 459. P. 214390. https://doi.org/10.1016/j.ccr.2021.214390
  2. Nykhrikova E.V., Kiseleva M.A., Kalle P. et al. // Inorg. Chem. 2025. V. 64. № 10. P. 5210. https://doi.org/10.1021/acs.inorgchem.5c00155
  3. Ruggeri D., Hoch M., Spataro D. et al. // Chem. Eur. J. 2025. V. 31. № 18. https://doi.org/10.1002/chem.202403309
  4. Bawden J.C., Francis P.S., DiLuzio S. et al. // J. Am. Chem. Soc. 2022. V. 144. № 25. P. 11189. https://doi.org/10.1021/jacs.2c02011
  5. Longhi E., De Cola L. // Iridium(III) Optoelectron. Photonics Appl. Wiley, 2017. Р. 205. https://doi.org/10.1002/9781119007166.ch6
  6. Yan J., Wu Y., Huang M. et al. // Angew. Chem. Int. Ed. 2025. https://doi.org/10.1002/anie.202424694
  7. Tatarin S.V., Krasnov L.V., Nykhrikova E.V. et al. // J. Mater. Chem. C 2025. https://doi.org/10.1039/D5TC00305A
  8. Wang X., Wu C., Tong K. et al. // Adv. Opt. Mater. 2025. V. 13 P. 2403273 https://doi.org/10.1002/adom.202403273
  9. Wang S.-F., Su B.-K., Wang X.-Q. et al. // Nat. Photonics. 2022. V. 16. № 12. P. 843. https://doi.org/10.1038/s41566-022-01079-8
  10. Milaeva E.R. // Russ. J. Coord. Chem. 2024. V. 50. № 12. P. 1043. https://doi.org/10.1134/S1070328424600815
  11. Krasnov L., Tatarin S., Smirnov D. et al. // Sci. Data. 2024. V. 11. № 1. P. 870. https://doi.org/10.1038/s41597-024-03735-w
  12. Kostova I. // Molecules. 2025. V. 30. № 4. P. 801. https://doi.org/10.3390/molecules30040801
  13. Mal’tsev E.I., Lypenko D.A., Dmitriev A.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S2. https://doi.org/10.1134/S107032842360078X
  14. Burlov A.S., Vlasenko V.G., Garnovskii D.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S68. https://doi.org/10.1134/S1070328423600857
  15. Sreejith S., Ajayan J., Reddy N.V.U. et al. // Micro Nanostructures. 2025. V. 200. P. 208101. https://doi.org/10.1016/j.micrna.2025.208101
  16. Muñoz-García A.B., Benesperi I., Boschloo G. et al. // Chem. Soc. Rev. 2021. V. 50. № 22. P. 12450. https://doi.org/10.1039/D0CS01336F
  17. Wang H., Zhang Y., Lin X. et al. // Sensors Actuators. B. 2022. V. 352. P. 131022. https://doi.org/10.1016/j.snb.2021.131022
  18. Tatarin S.V., Meshcheriakova E.A., Kozyukhin S.A. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16261. https://doi.org/10.1039/D3DT02789A
  19. DiLuzio S., Connell T.U., Mdluli V. et al. // J. Am. Chem. Soc. 2022. V. 144. № 3. P. 1431. https://doi.org/10.1021/jacs.1c12059
  20. De Kreijger S., Schott O., Troian-Gautier L. et al. // Inorg. Chem. 2022. V. 61. № 13. P. 5245. https://doi.org/10.1021/acs.inorgchem.1c03727
  21. Wang L., Wang S., Chang X. et al. // Dyes Pigments. 2022. V. 207. P. 110733. https://doi.org/10.1016/j.dyepig.2022.110733
  22. Yoon S., Gray T.G., Teets T.S. // Inorg. Chem. 2023. V. 62. № 20. P. 7898. https://doi.org/10.1021/acs.inorgchem.3c00670
  23. Li M., Wang L., You C. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16276. https://doi.org/10.1039/D3DT02629A
  24. Bodedla G.B., Zhu X., Zhou Z. et al. // Top. Curr. Chem. 2022. V. 380. № 6. P. 49. https://doi.org/10.1007/s41061-022-00404-7
  25. Cui P., Xue Y. // J. Alloys Compd. 2023. V. 960. P. 170668. https://doi.org/10.1016/j.jallcom.2023.170668
  26. Bezzubov S.I., Zharinova I.S., Khusyainova A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 34. P. 3277. https://doi.org/10.1002/ejic.202000372
  27. Zakharov A.Y., Kovalenko I.V., Meshcheriakova E.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 846. https://doi.org/10.1134/S1070328422700051
  28. Sahiba N., Agarwal S. // Top. Curr. Chem. 2020. V. 378. № 4–5. P. 44. https://doi.org/10.1007/s41061-020-00307-5
  29. Pozharskii A.F., Gulevskaya A.V., Claramunt R.M. et al. // Russ. Chem. Rev. 2020. V. 89. № 11. P. 1204. https://doi.org/10.1070/RCR4963
  30. Kalle P., Kiseleva M.A., Tatarin S.V. et al. // Molecules. 2022. V. 27. № 10. P. 3201. https://doi.org/10.3390/molecules27103201
  31. Tatarin S.V., Smirnov D.E., Taydakov I.V. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6435. https://doi.org/10.1039/D3DT00200D
  32. Liao H.-S., Xia X., Hu Y.-X. et al. // Synth. Met. 2022. V. 291. P. 117195. https://doi.org/10.1016/j.synthmet.2022.117195
  33. Tatarin S.V., Bezzubov S.I. // Inorg. Chem. 2024. V. 63. № 40. P. 18642. https://doi.org/10.1021/acs.inorgchem.4c02414
  34. Takimoto K., Watanabe Y., Yoshida J. et al. // Dalton Trans. 2021. V. 50. № 38. P. 13256. https://doi.org/10.1039/D1DT01960K
  35. Takimoto K., Shimada T., Nagura K. et al. // J. Am. Chem. Soc. 2023. V. 145. № 46. P. 25160. https://doi.org/10.1021/jacs.3c05866
  36. Wang W.-L., Yang D.-L., Gao L.-X. et al. // Molecules. 2014. V. 19. № 1. P. 102. https://doi.org/10.3390/molecules19010102
  37. Smirnov D.E., Tatarin S.V., Kiseleva M.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 9. P. 1178. https://doi.org/10.1134/S0036023623601605
  38. Sheldrick G.M. // SADABS. Version 2008/1. 2008. Bruker AXS Inc. Germany.
  39. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  40. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  41. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 9. https://doi.org/10.1107/S2053229614024929
  42. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  43. Brunen S., Grell Y., Steinlandt P.S. et al. // Molecules. 2021. V. 26. № 7. P. 1822. https://doi.org/10.3390/molecules26071822
  44. Radhi M.M. // Rend. Fis. Acc. Lincei. 2014. V. 25. P. 215. https://doi.org/10.1007/s12210-014-0295-z
  45. Angarkhe P.R., Shaikh A., Rekha Rout S. et al. // J. Mol. Struct. 2024. V. 1296. № 1. 136920. https://doi.org/10.1016/j.molstruc.2023.136920

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».