Synthesis, structure, optical, and electrochemical properties of the chromophore cyclometalated iridium(III) complex
- Autores: Smirnov D.E.1, Bezzubov S.I.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 51, Nº 8 (2025)
- Páginas: 510-518
- Seção: Articles
- URL: https://journals.rcsi.science/0132-344X/article/view/306954
- DOI: https://doi.org/10.31857/S0132344X25080038
- EDN: https://elibrary.ru/lfbnph
- ID: 306954
Citar
Resumo
A new N-donor ligand, methyl 4-(1-methyl-1H-perimidin-2-yl)nicotinate, and the corresponding octahedral cationic iridium(III) complex (1) were designed and synthesized. 1-Benzyl-2-phenyl[2,3]naphthimidazole was used as a cyclometalated ligand; PF6– served as a counterion. Compound 1 was characterized by 1H, 13C, 19F, 31P, 1H,1H-COSY, 1H,1H-NOESY NMR, high-resolution mass spectrometry and X-ray diffraction. As a result of the combination of ligands containing a large conjugated system around the metal ion, the target complex exhibits light absorption up to 700 nm (ε ~ 1000 M–1cm–1), translating in its deep color. Complex 1 demonstrates reversible electrochemical behavior at positive potentials with E1/2 = 0.58 V vs. EFc+/Fc. In terms of the key characteristics, the resulting compound surpasses most iridium analogs, and therefore appears promising for further testing in photovoltaic devices.
Palavras-chave
Sobre autores
D. Smirnov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bezzubov@igic.ras.ru
Rússia, Moscow, Russia
S. Bezzubov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: bezzubov@igic.ras.ru
Rússia, Moscow, Russia
Bibliografia
- Tritton D.N., Tang F.-K., Bodedla G.B. et al. // Coord. Chem. Rev. 2022. V. 459. P. 214390. https://doi.org/10.1016/j.ccr.2021.214390
- Nykhrikova E.V., Kiseleva M.A., Kalle P. et al. // Inorg. Chem. 2025. V. 64. № 10. P. 5210. https://doi.org/10.1021/acs.inorgchem.5c00155
- Ruggeri D., Hoch M., Spataro D. et al. // Chem. Eur. J. 2025. V. 31. № 18. https://doi.org/10.1002/chem.202403309
- Bawden J.C., Francis P.S., DiLuzio S. et al. // J. Am. Chem. Soc. 2022. V. 144. № 25. P. 11189. https://doi.org/10.1021/jacs.2c02011
- Longhi E., De Cola L. // Iridium(III) Optoelectron. Photonics Appl. Wiley, 2017. Р. 205. https://doi.org/10.1002/9781119007166.ch6
- Yan J., Wu Y., Huang M. et al. // Angew. Chem. Int. Ed. 2025. https://doi.org/10.1002/anie.202424694
- Tatarin S.V., Krasnov L.V., Nykhrikova E.V. et al. // J. Mater. Chem. C 2025. https://doi.org/10.1039/D5TC00305A
- Wang X., Wu C., Tong K. et al. // Adv. Opt. Mater. 2025. V. 13 P. 2403273 https://doi.org/10.1002/adom.202403273
- Wang S.-F., Su B.-K., Wang X.-Q. et al. // Nat. Photonics. 2022. V. 16. № 12. P. 843. https://doi.org/10.1038/s41566-022-01079-8
- Milaeva E.R. // Russ. J. Coord. Chem. 2024. V. 50. № 12. P. 1043. https://doi.org/10.1134/S1070328424600815
- Krasnov L., Tatarin S., Smirnov D. et al. // Sci. Data. 2024. V. 11. № 1. P. 870. https://doi.org/10.1038/s41597-024-03735-w
- Kostova I. // Molecules. 2025. V. 30. № 4. P. 801. https://doi.org/10.3390/molecules30040801
- Mal’tsev E.I., Lypenko D.A., Dmitriev A.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S2. https://doi.org/10.1134/S107032842360078X
- Burlov A.S., Vlasenko V.G., Garnovskii D.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S68. https://doi.org/10.1134/S1070328423600857
- Sreejith S., Ajayan J., Reddy N.V.U. et al. // Micro Nanostructures. 2025. V. 200. P. 208101. https://doi.org/10.1016/j.micrna.2025.208101
- Muñoz-García A.B., Benesperi I., Boschloo G. et al. // Chem. Soc. Rev. 2021. V. 50. № 22. P. 12450. https://doi.org/10.1039/D0CS01336F
- Wang H., Zhang Y., Lin X. et al. // Sensors Actuators. B. 2022. V. 352. P. 131022. https://doi.org/10.1016/j.snb.2021.131022
- Tatarin S.V., Meshcheriakova E.A., Kozyukhin S.A. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16261. https://doi.org/10.1039/D3DT02789A
- DiLuzio S., Connell T.U., Mdluli V. et al. // J. Am. Chem. Soc. 2022. V. 144. № 3. P. 1431. https://doi.org/10.1021/jacs.1c12059
- De Kreijger S., Schott O., Troian-Gautier L. et al. // Inorg. Chem. 2022. V. 61. № 13. P. 5245. https://doi.org/10.1021/acs.inorgchem.1c03727
- Wang L., Wang S., Chang X. et al. // Dyes Pigments. 2022. V. 207. P. 110733. https://doi.org/10.1016/j.dyepig.2022.110733
- Yoon S., Gray T.G., Teets T.S. // Inorg. Chem. 2023. V. 62. № 20. P. 7898. https://doi.org/10.1021/acs.inorgchem.3c00670
- Li M., Wang L., You C. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16276. https://doi.org/10.1039/D3DT02629A
- Bodedla G.B., Zhu X., Zhou Z. et al. // Top. Curr. Chem. 2022. V. 380. № 6. P. 49. https://doi.org/10.1007/s41061-022-00404-7
- Cui P., Xue Y. // J. Alloys Compd. 2023. V. 960. P. 170668. https://doi.org/10.1016/j.jallcom.2023.170668
- Bezzubov S.I., Zharinova I.S., Khusyainova A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 34. P. 3277. https://doi.org/10.1002/ejic.202000372
- Zakharov A.Y., Kovalenko I.V., Meshcheriakova E.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 846. https://doi.org/10.1134/S1070328422700051
- Sahiba N., Agarwal S. // Top. Curr. Chem. 2020. V. 378. № 4–5. P. 44. https://doi.org/10.1007/s41061-020-00307-5
- Pozharskii A.F., Gulevskaya A.V., Claramunt R.M. et al. // Russ. Chem. Rev. 2020. V. 89. № 11. P. 1204. https://doi.org/10.1070/RCR4963
- Kalle P., Kiseleva M.A., Tatarin S.V. et al. // Molecules. 2022. V. 27. № 10. P. 3201. https://doi.org/10.3390/molecules27103201
- Tatarin S.V., Smirnov D.E., Taydakov I.V. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6435. https://doi.org/10.1039/D3DT00200D
- Liao H.-S., Xia X., Hu Y.-X. et al. // Synth. Met. 2022. V. 291. P. 117195. https://doi.org/10.1016/j.synthmet.2022.117195
- Tatarin S.V., Bezzubov S.I. // Inorg. Chem. 2024. V. 63. № 40. P. 18642. https://doi.org/10.1021/acs.inorgchem.4c02414
- Takimoto K., Watanabe Y., Yoshida J. et al. // Dalton Trans. 2021. V. 50. № 38. P. 13256. https://doi.org/10.1039/D1DT01960K
- Takimoto K., Shimada T., Nagura K. et al. // J. Am. Chem. Soc. 2023. V. 145. № 46. P. 25160. https://doi.org/10.1021/jacs.3c05866
- Wang W.-L., Yang D.-L., Gao L.-X. et al. // Molecules. 2014. V. 19. № 1. P. 102. https://doi.org/10.3390/molecules19010102
- Smirnov D.E., Tatarin S.V., Kiseleva M.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 9. P. 1178. https://doi.org/10.1134/S0036023623601605
- Sheldrick G.M. // SADABS. Version 2008/1. 2008. Bruker AXS Inc. Germany.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Spek A.L. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 9. https://doi.org/10.1107/S2053229614024929
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Brunen S., Grell Y., Steinlandt P.S. et al. // Molecules. 2021. V. 26. № 7. P. 1822. https://doi.org/10.3390/molecules26071822
- Radhi M.M. // Rend. Fis. Acc. Lincei. 2014. V. 25. P. 215. https://doi.org/10.1007/s12210-014-0295-z
- Angarkhe P.R., Shaikh A., Rekha Rout S. et al. // J. Mol. Struct. 2024. V. 1296. № 1. 136920. https://doi.org/10.1016/j.molstruc.2023.136920
Arquivos suplementares
