Synthetic Transformations of Higher Terpenoids. 42. Synthesis of New 18-Nor-4-(Carboxyethyl)Isopimara-7,15-Diene Derivatives and Study of Their Cytotoxicity on MCF7, U-87 MG and DU 145 Cancer Cell Lines

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

(E)-16-Aryl-substituted derivatives of tricyclic diterpenoids were synthesized by cross-coupling of isopimaric acid derivatives with substituted iodorenes catalyzed by palladium acetate in the presence of silver carbonate. Condensation of (E)-18-nor-4-(carboxyethyl)-16-(2-carboxyethyl)isopimar-7,15-diene dichloride with propargylamine hydrochloride leads to the corresponding dialkine, which readily reacts with diazide in the Cu(I) catalyzed cycloaddition (CuAAC) reaction, with the formation of macroheterocyclic compound containing a pimaran type tricyclic diterpenoid core and 1,2,3-triazole rings in the linker chain. Reaction of in situ prepared (E)-18-nor-16-azido-4-(carboxyethyl)isopimar-7,15-diene acid chloride with propargylamine hydrochloride or an alkynyl-substituted derivative of the protected Gly-Gly dipeptide leads to the corresponding azidoalkynes. The intramolecular CuAAC reaction of azidodipeptidylalkine afforded a macroheterocyclic derivative containing a dipeptide and triazole moiety in the linker chain. The obtained compounds showed higher (compared with the isopimaric acid) cytotoxicity on tumor cells MCF-7 and were less toxic to non-cancer cells than the reference drug doxorubicin. The GI50 value of the most active compound is 6.3 μM, selectivity index >15) (MTT test). The synthesized derivatives of the tricyclic diterpenoid isopimaric acid can be used to develop new antitumor agents.

作者简介

M. Gromova

Novosibirsk State Pedagogical University (NSPU),; Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: schultz@nioch.nsc.ru
Russia, 630126, Novosibirsk, ul. Vilyuskaja 28; Russia, 630090, Novosibirsk, prosp. Akad. Lavrentyevа 9

Y. Kharitonov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: schultz@nioch.nsc.ru
Russia, 630090, Novosibirsk, prosp. Akad. Lavrentyevа 9

Т. Rybalova

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: schultz@nioch.nsc.ru
Russia, 630090, Novosibirsk, prosp. Akad. Lavrentyevа 9

V. Larionov

Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)

Email: schultz@nioch.nsc.ru
Russia, 119334, Moscow, ul. Vavilova 28

T. Golubeva

The Federal Research Center Institute of Cytology and Genetics SB RAS (ICG SB RAS)

Email: schultz@nioch.nsc.ru
Russia, 630090, Novosibirsk, prosp. Akad. Lavrentyevа 9

E. Shults

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: schultz@nioch.nsc.ru
Russia, 630090, Novosibirsk, prosp. Akad. Lavrentyevа 9

参考

  1. Gromova M.A., Kharitonov Yu.V., Borisov S.A., Rybalova T.V., Tolstikova T.G., Shults E.E. // Chem. Nat. Compd. 2022. V. 58. P. 55–64. https://doi.org/10.1007/s10600-022-03596-y
  2. Keeling C.I., Bohlmann J. // Phytochemistry. 2006. V. 67. P. 2415–2423. https://doi.org/10.1016/j.phytochem.2006.08.019
  3. Толстиков Г.A., Толстикова Т.Г., Шульц Э.Э., Толстиков С.E., Хвостов M.В. // Смоляные кислоты хвойных России. Химия и фармакология / Pед. Трофимов Б.A. Новосибирск: Гео, 2011. С. 207–242.
  4. Kugler S., Ossowicz P., Malarczyk-Matusiak K., Wierzbicka E. // Molecules. 2019. V. 24. P. 1651. https://doi.org/10.3390/molecules24091651
  5. Smith E., Williamson E., Zloh M., Gibbons S. // Phytother. Res. 2005. V. 19. P. 538–542. https://doi.org/10.1002/ptr.1711
  6. Coté H., Boucher M.-A., Pichette A., Roger B., Legault J. // J. Ethnopharmacology. 2016. V. 194. P. 684–689. https://doi.org/10.1016/j.jep.2016.10.035
  7. Pferschy-Wenzig E.M., Kunert O., Presser A., Bauer R. // J. Agric. Food Chem. 2008. V. 56. P. 11688–11693. https://doi.org/10.1021/jf8024002
  8. Imaizumi Y., Sakamoto K., Yamada A., Hotta A., Ohya S., Muraki K., Uchiyama M., Ohwada T. // Mol. Pharmacol. 2002. V. 62. P. 836–846. https://doi.org/10.1124/mol.62.4.836
  9. Salari S., Silvera Ejneby M., Brask J., Elinder F. // Acta Physiol. (Oxf.). 2018. V. 222. P. e12895. https://doi.org/10.1111/apha.12895
  10. Ge L., Hoa N.T., Wilson Z., Arismendi-Morillo G., Kong X.-T., Tajhya R.B., Beeton C., Jadus M.R. // Int. Immunopharmacol. 2014. V. 22. P. 427–443. https://doi.org/10.1016/j.intimp.2014.06.040
  11. Sizemore G., McLaughlin S., Newman M., Brundage K., Ammer A., Martin K., Pugacheva E., Coad J., Mattes M.D., Yu H.-G. // BMC Cancer. 2020. V. 20. P. 595. https://doi.org/10.1186/s12885-020-07071-1
  12. Lu Y., Zhao Z., Chen Y., Wang J. // Lett. Org. Chem. 2021. V. 18. P. 950–956. https://doi.org/10.2174/1570178618666210813121953
  13. Lu Y.-J., Zhao Z.-D., Chen Y.-X., Wang J., Xu S.-C., Gu Y. // J. Asian Nat. Prod. Res. 2020. V. 23. P. 545–555. https://doi.org/10.1080/10286020.2020.1810668
  14. Liu J., Lu Y., Wang J., Bi L., Zhao Z. // Chin. J. Org. Chem. 2017. V. 37. P. 731–738. https://doi.org/10.6023/cjoc201610017
  15. Gromova M.A., Kharitonov Yu.V., Pokrovskii M.A., Bagryanskaya I.Yu., Pokrovskii A.G., Shul’ts E.E. // Chem. Nat. Compd. 2019. V. 55. P. 52–59. https://doi.org/10.1007/s10600-019-02613-x
  16. Gromova M.A., Kharitonov Yu.V., Golubeva T.S., Shults E.E. // Macroheterocycles. 2021. V. 14. P. 231–239. https://doi.org/10.6060/mhc210945s
  17. Gromova M.A., Kharitonov Yu.V., Rybalova T.V., Shults E.E. // Monatsh. Chem. 2020. V. 151. P. 1817–1827. https://doi.org/10.1007/s00706-020-02713-3
  18. Gromova M.A., Kharitonov Y.V., Rybalova T.V., Shults E.E. // Macroheterocycles. 2021. V. 14. P. 105–111. https://doi.org/10.6060/mhc200817s
  19. Zhao S., Wang Z-P., Wen X., Li S., Wei G., Guo J., He Y. // Org. Lett. 2020. V. 22. P. 6632–6636. https://doi.org/10.1021/acs.orglett.0c02403
  20. Thirumurugan P., Matosiuk D., Jozwiak K. // Chem. Rev. 2013. V. 113. P. 4905–4979. https://doi.org/10.1021/cr200409f
  21. Klein E., DeBonis S., Thiede B., Skoufias D.A., Kozielski F., Lebeau L. // Bioorg. Med. Chem. 2007. V. 15. P. 6474–6488. https://doi.org/1016/j.bmc.2007.06.016
  22. Spek A.L. // J. Appl. Cryst. 2003. V. 36. P. 7–13. https://doi.org/10.1107/S0021889802022112
  23. Wilson J.K., Sargent J.M., Elgie A.W., Hill J.G., Taylor C.G. // Br. J. Cancer. 1990. V. 62. P. 189–194. https://doi.org/10.1038/bjc.1990.258
  24. Kharitonov Yu.V., Shakirov M.M., Shul’ts E.E. // Chem. Nat. Compd. 2014. V. 49. P. 1067–1075. https://doi.org/10.1007/s10600-014-0823-1
  25. Zhang Z., Xiao F., Huang B., Hu J., Fu B., Zhang Z. // Org. Lett. 2016. V. 18. P. 908–911. https://doi.org/10.1021/acs.orglett.6b00607
  26. Wang H., He C., Pan Y., Yao C., Wu Q., Deng H. // J. Incl. Phenom. Macrocycl. Chem. 2012. V. 73. P. 177–183. https://doi.org/10.1007/s10847-011-0040-5
  27. Larionov V.A., Adonts H.V., Gugkaeva Z.T., Smol’yakov A.F., Saghyan A.S., Miftakhov M.S., Kuznetsova S.A., Maleev V.I., Belokon Yu.N. // ChemistrySelect. 2018. V. 3. P. 3107–3110. https://doi.org/10.1002/slct.201800228
  28. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3–10. https://doi.org/10.1107/S1600576714022985
  29. Sheldrick G.M. // Acta Crystallogr. 2015. A71. P. 3–8. https://doi.org/10.1107/S2053273314026370

补充文件

附件文件
动作
1. JATS XML
2.

下载 (101KB)
3.

下载 (64KB)
4.

下载 (95KB)
5.

下载 (132KB)
6.

下载 (276KB)
7.

下载 (103KB)

版权所有 © М.А. Громова, Ю.В. Харитонов, Т.В. Рыбалова, В.А. Ларионов, Т.С. Голубева, Э.Э. Шульц, 2023

##common.cookie##