Modern Laboratory Test-Systems as Platforms for Validation of Clinically Promising T-Cell Receptors

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The development of therapeutic antigen-specific T-cell receptors (TCRs) requires comprehensive preclinical validation of their functional activity. One of the approaches in the development of new drugs for cell therapy based on antigen-specific T lymphocytes is the modification of autologous T lymphocytes with endogenous T-cell receptors. The present work reviews modern laboratory platforms used to assess key TCR characteristics: immunological synapse formation, specificity and affinity of antigen binding, activation of signalling pathways, cytokine production and cytotoxic potential. Particular attention is paid to the creation of model T-cell lines expressing transgenic TCRs, optimisation of HLA context of target cells and application of multiparametric technologies for immune response analysis. The prospects of using 3D organoid models for validation of functional activity of transgenic TCRs under conditions close to physiological ones, as well as for predicting their clinical efficacy are discussed. The presented approaches form the basis for rational selection of candidate receptors for their subsequent application in immunotherapy of tumours and chronic infections.

Sobre autores

R. Mungalov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Institute of Translational Medicine, Pirogov Russian National Research Medical University; National Research University "Higher School of Economics"

Email: mungalov.roman@yandex.ru
Faculty of Biology and Biotechnology Moscow, Russia; Moscow, Russia; Moscow, Russia

N. Vand

Institute of Translational Medicine, Pirogov Russian National Research Medical University

Moscow, Russia

D. Chudakov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Institute of Translational Medicine, Pirogov Russian National Research Medical University; Center for Molecular and Cellular Biology

Moscow, Russia; Moscow, Russia; Moscow, Russia

E. Bryushkova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Institute of Translational Medicine, Pirogov Russian National Research Medical University; Lomonosov Moscow State University

Department of Molecular Biology Moscow, Russia; Moscow, Russia; Moscow, Russia

Bibliografia

  1. Bartelt R.R., Cruz-Orcutt N., Collins M., Houtman J.C.D. // PLoS One. 2009. V. 4. P. e5430. https://doi.org/10.1371/journal.pone.0005430
  2. Clauss J., Obenaus M., Miskey C., Ivics Z., Izsvák Z., Uckert W., Bunse M. // Hum. Gene Ther. 2018. V. 29. P. 569–584. https://doi.org/10.1089/hum.2017.136
  3. Rubinstein M.P., Kadima A.N., Salem M.L., Nguyen C.L., Gillanders W.E., Nishimura M.I., Cole D.J. // J. Immunol. 2003. V. 170. P. 1209–1217. https://doi.org/10.4049/jimmunol.170.3.1209
  4. Heemskerk M.H.M., Hagedoorn R.S., Van Der Hoorn M.A.W.G., Van Der Veken L.T., Hoogeboom M., Kester M.G.D., Willemze R., Falkenburg J.H.F. // Blood. 2007. V. 109. P. 235–243. https://doi.org/10.1182/blood-2006-03-013318
  5. Minami Y., Weissman A.M., Samelson L.E., Klausner R.D. // Proc. Natl. Acad. Sci. USA. 1987. V. 84. P. 2688–2692. https://doi.org/10.1073/pnas.84.9.2688
  6. Ahmadi M., King J.W., Xue S.A., Voisine C., Holler A., Wright G.P., Waxman J., Morris E., Stauss H.J. // Blood. 2011. V. 118. P. 3528–3537. https://doi.org/10.1182/blood-2011-04-346338
  7. Bendle G.M., Linnemann C., Hooijkaas A.I., Bies L., De Witte M.A., Jorritsma A., Kaiser A.D.M., Pouw N., Debets R., Kieback E., Uckert W., Song J.Y., Haanen J.B.A.G., Schumacher T.N.M. // Nat. Med. 2010. V. 16. P. 565–570. https://doi.org/10.1038/nm.2128
  8. Van Loenen M.M., De Boer R., Amir A.L., Hagedoorn R.S., Volbeda G.L., Willemze R., Van Rood J.J., Falkenburg J.H.F., Heemskerk M.H.M. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 10972–10977. https://doi.org/10.1073/pnas.1005802107
  9. Rosenberg S.A. // Mol. Ther. 2010. V. 18. P. 1744– 1745. https://doi.org/10.1038/mt.2010.195
  10. Cohen C.J., Zhao Y., Zheng Z., Rosenberg S.A., Morgan R.A. // Cancer Res. 2006. V. 66. P. 8878– 8886. https://doi.org/10.1158/0008-5472.CAN-06-1450
  11. Aggen D.H., Chervin A.S., Schmitt T.M., Engels B., Stone J.D., Richman S.A., Piepenbrink K.H., Baker B.M., Greenberg P.D., Schreiber H., Kranz D.M. // Gene Ther. 2012. V. 19. P. 365–374. https://doi.org/10.1038/gt.2011.104
  12. Wei F., Cheng X., Xue J.Z., Xue S. // Front. Immunol. 2022. V. 13. P. 1–18. https://doi.org/10.3389/fimmu.2022.850358
  13. Bethune M.T., Gee M.H., Bunse M., Lee M.S., Gschweng E.H., Pagadala M.S., Zhou J., Cheng D., Heath J.R., Kohn D.B., Kuhns M.S., Uckert W., Baltimore D. // Elife. 2016. V. 5. P. 1–24. https://doi.org/10.7554/eLife.19095
  14. Stadtmauer E.A., Fraietta J.A., Davis M.M., Cohen A.D., Weber K.L., Lancaster E., Mangan P.A., Kulikovskaya I., Gupta M., Chen F., Tian L., Gonzalez V.E., Xu J., Jung I.Y., Melenhorst J.J., Plesa G., Shea J., Matlawski T., Cervini A., June C.H. // Science. 2020. V. 367. P. 1–20. https://doi.org/10.1126/science.aba7365
  15. Okada S., Muraoka D., Yasui K., Tawara I., Kawamura A., Okamoto S., Mineno J., Seo N., Shiku H., Eguchi S., Ikeda H. // Cancer Sci. 2023. V. 114. P. 4172–4183. https://doi.org/10.1111/cas.15954
  16. Birnbaum M.E., Berry R., Hsiao Y.S., Chen Z., Shingu-Vazquez M.A., Yu X., Waghray D., Fischer S., McCluskey J., Rossjohn J., Walz T., Garcia K.C. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 17576–17581. https://doi.org/10.1073/pnas.1420936111
  17. Li Y., Yin Y., Mariuzza R.A. // Front. Immunol. 2013. V. 4. P. 1–11. https://doi.org/10.3389/fimmu.2013.00206
  18. Schumacher T.N., Schreiber R.D. // Science. 2015. V. 348. P. 69–74. https://doi.org/10.1126/science.aaa4971
  19. Altman J.D., Moss P.A.H., Goulder P.J.R., Barouch D.H., McHeyzer-Williams M.G., Bell J.I., McMichael A.J., Davis M.M. // Science. 1996. V. 274. P. 94–96. https://doi.org/10.1126/science.274.5284.94
  20. Dolton G., Zervoudi E., Rius C., Wall A., Thomas H.L., Fuller A., Yeo L., Legut M., Wheeler S., Attaf M., Chudakov D.M., Choy E., Peakman M., Sewell A.K. // Front. Immunol. 2018. V. 9. P. 1–18. https://doi.org/10.3389/fimmu.2018.01378
  21. Zhang S.Q., Ma K.Y., Schonnesen A.A., Zhang M., He C., Sun E., Williams C.M., Jia W., Jiang N. // Nat. Biotechnol. 2018. V. 36. P. 1156–1159. https://doi.org/10.1038/nbt.4282
  22. Pétremand R., Chiffelle J., Bobisse S., Perez M.A.S., Schmidt J., Arnaud M., Barras D., Lozano-Rabella M., Genolet R., Sauvage C., Saugy D., Michel A., Huguenin-Bergenat A.L., Capt C., Moore J.S., De Vito C., Labidi-Galy S.I., Kandalaft L.E., Dangaj Laniti D., Harari A. // Nat. Biotechnol. 2024. V. 43. https://doi.org/10.1038/s41587-024-02232-0
  23. Povlsen H.R., Bentzen A.K., Kadivar M., Jessen L.E., Hadrup S.R., Nielsen M. // Elife. 2023. V. 12. P. 1–25. https://doi.org/10.7554/eLife.81810
  24. Zhang W., Hawkins P.G., He J., Gupta N.T., Liu J., Choonoo G., Jeong S.W., Chen C.R., Dhanik A., Dillon M., Deering R., Macdonald L.E., Thurston G., Atwal G.S. // Sci. Adv. 2021. V. 7. P. 1–12. https://www.science.org/
  25. Jahan F., Koski J., Schenkwein D., Ylä-Herttuala S., Göös H., Huuskonen S., Varjosalo M., Maliniemi P., Leitner J., Steinberger P., Bühring H.-J., Vettenranta K., Korhonen M. // Front. Mol. Med. 2023. V. 3. P. 1070384. https://doi.org/10.3389/fmmed.2023.1070384
  26. Rosskopf S., Leitner J., Paster W., Morton L.T., Hagedoorn R.S., Steinberger P., Heemskerk M.H.M. // Oncotarget. 2018. V. 9. P. 17608–17619. https://doi.org/10.18632/oncotarget.24807
  27. Jutz S., Leitner J., Schmetterer K., Doel-Perez I., Majdic O., Grabmeier-Pfistershammer K., Paster W., Huppa J.B., Steinberger P.// J. Immunol. Methods. 2016. V. 430. P. 10–20. https://doi.org/10.1016/j.jim.2016.01.007
  28. Janetzki S., Rueger M., Dillenbeck T. // Cells. 2014. V. 3. P. 1102–1115. https://doi.org/10.3390/cells3041102
  29. Ghahri-Saremi N., Akbari B., Soltantoyeh T., Hadjati J., Ghassemi S., Mirzaei H.R. // Front. Immunol. 2021. V. 12. P. 738456. https://doi.org/10.3389/fimmu.2021.738456
  30. Kiesgen S., Messinger J.C., Chintala N.K., Tano Z., Adusumilli P.S. // Nat. Protoc. 2021. V. 16. P. 1331– 1342. https://doi.org/10.1038/s41596-020-00467-0
  31. Park L.M., Lannigan J., Jaimes M.C. // Cytom. Part A. 2020. V. 97. P. 1044–1051. https://doi.org/10.1002/cyto.a.24213
  32. Sudworth A., Dai K.Z., Vaage J.T., Kveberg L. // Front. Immunol. 2016. V. 7. P. 572. https://doi.org/10.3389/fimmu.2016.00572
  33. Bossi G., Gerry A.B., Paston S.J., Sutton D.H., Hassan N.J., Jakobsen B.K. // Oncoimmunology. 2013. V. 2. P. e26840. https://doi.org/10.4161/onci.26840
  34. Xing F., Liu Y.C., Huang S., Lyu X., Su S.M., Chan U.I., Wu P.C., Yan Y., Ai N., Li J., Zhao M., Rajendran B.K., Liu J., Shao F., Sun H., Choi T.K., Zhu W., Luo G., Liu S., Deng C.X. // Theranostics. 2021. V. 11. P. 9415–9430. https://doi.org/10.7150/THNO.59533
  35. Maecker H.T., McCoy J.P., Nussenblatt R. // Nat. Rev. Immunol. 2012. V. 12. P. 191–200. https://doi.org/10.1038/nri3158
  36. Simoni Y., Becht E., Fehlings M., Loh C.Y., Koo S.L., Teng K.W.W., Yeong J.P.S., Nahar R., Zhang T., Kared H., Duan K., Ang N., Poidinger M., Lee Y.Y., Larbi A., Khng A.J., Tan E., Fu C., Mathew R., Newell E.W. // Nature. 2018. V. 557. P. 575–579. https://doi.org/10.1038/s41586-018-0130-2
  37. Dijkstra K.K., Cattaneo C.M., Weeber F., Chalabi M., van de Haar J., Fanchi L.F., Slagter M., van der Velden D.L., Kaing S., Kelderman S., van Rooij N., van Leerdam M.E., Depla A., Smit E.F., Hartemink K.J., de Groot R., Wolkers M.C., Sachs N., Snaebjornsson P., Voest E.E. // Cell. 2018. V. 174. P. 1586– 1598.e12. https://doi.org/10.1016/j.cell.2018.07.009
  38. Sontheimer-Phelps A., Hassell B.A., Ingber D.E. // Nat. Rev. Cancer. 2019. V. 19. P. 65–81. https://doi.org/10.1038/s41568-018-0104-6
  39. Neal J.T., Li X., Zhu J., Giangarra V., Grzeskowiak C.L., Ju J., Liu I.H., Chiou S.H., Salahudeen A.A., Smith A.R., Deutsch B.C., Liao L., Zemek A.J., Zhao F., Karlsson K., Schultz L.M., Metzner T.J., Nadauld L.D., Tseng Y.Y., Kuo C.J. // Cell. 2018. V. 175. P. 1972– 1988.e16. https://doi.org/10.1016/j.cell.2018.11.021
  40. Natarajan V., Simoneau C.R., Erickson A.L., Meyers N.L., Baron J.L., Cooper S., McDevitt T.C., Ott M. // Open Biol. 2022. V. 12. P. 210320. https://doi.org/10.1098/rsob.210320

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».