Regulation of pou5f3 Family Pluripotency Gene Transcripts Stability by Ybx1 Ribonucleoprotein Complexes in Xenopus laevis Early Development

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Here, we studied the regulation of pou5f3 family transcripts stability by association with Ybxl, a protein of ribonucleoprotein complexes. It is known that the clawed frog Xenopus laevis has three genes belonging to the POU5 family: pou5f3.1/oct91, pou5f3.2/oct25, and pou5f3.3/oct60. The Pou5f3 family factors are orthologues of the mammalian embryonic stem cell OCT4 pluripotency factor. However, the expression patterns of these genes differ over time. Pou5f3.3/oct60 transcripts are stored in oocytes, are present in large quantities in fertilized eggs, and then degrade only after fertilization. Pou5f3.2/oct25 transcripts are also present in the zygote, but their numbers increase even more during the development process. Finally, pou5f3.1/oct91 transcription begins only after the activation of the embryo genome at the middle blastula stage. In the present work, we revealed a much higher specificity of the Ybx1 factor to form a complex with the maternal mRNA of the pou5f3.3/oct60 gene compared to zygotic mRNAs of the pou5f3.1/oct91 and pou5f3.2/oct25 genes. Since Ybx1 is a protein that, on the one hand, is involved in interaction with cytoskeletal proteins, and, on the other hand, binds and stabilizes pluripotency genes mRNA, it can play a linking role in between the degradation of these maternal transcripts and cytoskeletal rearrangements during the onset of morphogenetic cell movements in the process of formation of germ layers.

About the authors

E. A. Parshina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Moscow, 117997 Russia

A. G. Zaraisky

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Moscow, 117997 Russia

N. Y. Martynova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: martnat61@gmail.com
Moscow, 117997 Russia

References

  1. Onichtchouk D. // Biochimica et Biophysica Acta. 2016. V. 1859. P. 770-779. https://doi.org/10.1016/j.bbagrm.2016.03.013
  2. Gold D.A., Gates R.D., Jacobs D.K. // Mol. Biol. Evol. 2014. V. 31. P. 3136-3147. https://doi.org/10.1093/molbev/msu243
  3. Rosner M.H., Vigano M.A., Ozato K., Timmons P.M., Poirier F., Rigby P.W., Staudt L.M. // Nature. 1990. V. 345. P. 686-692. https://doi.org/10.1038/345686a0
  4. Downs K.M. // Dev Dyn. 2008. V. 237. P. 464-475. https://doi.org/10.1002/dvdy.21438
  5. Morichika K., Sugimoto M., Yasuda K., Kinoshita T. // Zygote. 2014. V. 22. P. 266-274. https://doi.org/10.1017/S0967199412000536
  6. Hinkley C.S., Martin J.F., Leibham D., Perry M. // Mol. Cell. Biol. 1992. V. 12. P.638-649. https://doi.org/10.1128/mcb.12.2.638-649.1992
  7. Cao Y., Knochel S., Donow C., Miethe J., Kaufmann E., Knochel W. // J. Biol. Chem. 2004. V. 279. P. 43735- 43743. https://doi.org/10.1074/jbc.M407544200
  8. Cao Y., Siegel D., Knöchel W. // Mech Dev. 2006. V. 123. P. 614-625. https://doi.org/10.1016/j.mod.2006.06.004
  9. Cao Y., Siegel D., Donow C., Knöchel S., Yuan L., Knöchel W. // EMBO J. 2007. V. 26. P. 2942-2954. https://doi.org/10.1038/sj.emboj.7601736
  10. Parshina E.A., Zaraisky A.G., Martynova N.Yu. // Bioorg. Chem. 2020. V. 46. P. 1-10. https://doi.org/10.2139/ssrn.3554017
  11. Jacobson A., Peltz,S.W. // Ann. Rev. Biochem. 1996. V. 65. P. 693-739. https://doi.org/10.1146/annurev.bi.65.070196.003401
  12. Evdokimova V.M., Ovchinnikov L.P. // Int. J. Biochem. Cell. Biol. 1999. V. 31. P. 139-149. https://doi.org/10.1016/s1357-2725(98)00137-x
  13. Evdokimova V., Ruzanov P., Imataka H., Raught B., Svitkin Y., Ovchinnikov L.P., Sonenberg N. // EMBO J. 2001. V. 20. P. 5491-5502. https://doi.org/10.1093/emboj/20.19.5491
  14. Bouvet P., Matsumoto K., Wolffe A.P. // J. Biol. Chem. 1995. V. 270. P. 28297-28303. https://doi.org/10.1074/jbc.270.47.28297
  15. Eliseeva I.A., Kim E.R., Guryanov S.G., Ovchinnikov L.P., Lyabin D.N. // Biochemistry (Moscow). 2011. V. 76. P. 1402-1433. https://doi.org/10.1134/S0006297911130049.
  16. Parshina E.A., Eroshkin F.M., Оrlov E.E., Gyoeva F.K., Shokhina A.G., Staroverov D.B., Belousov V.V., Zhigalova N.A., Prokhortchouk E.B., Zaraisky A.G., Martynova N.Y. // Cell. Rep. 2020. V. 33. P. 108396. https://doi.org/10.1016/j.celrep.2020.108396
  17. Martynova N.Y., Parshina E.A., Zaraisky A.G. // STAR Protocols. 2021. V. 2. P. 100552. https://doi.org/10.1016/j.xpro.2021.100552
  18. Livigni А., Peradziryi H., Sharov A.A., Chia G., Hammachi F., Portero Migueles R.P., Sukparangsi W., Pernagallo S., Bradley M., Nichols J., Ko M.S.H., Brickman J.M. // Curr. Biol. 2013. V. 23 P. 2233- 2244. https://doi.org/10.1016/j.cub.2013.09.048
  19. Ruzanov P.V., Evdokimova V.M., Korneeva N.L., Hershey J.W., Ovchinnikov L.P. // J Cell Sci. 1999. V. 112. P. 3487-3496. https://doi.org/10.1242/jcs.112.20.3487
  20. Martynova N.Y., Parshina E.A., Eroshkin F.M., Zaraisky A.G. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 530-536. https://doi.org/10.1134/S1068162020040147
  21. Livak K.J., Schmittgen T.D. // Methods. 2001. V. 25. P. 402-408. https://doi.org/10.1006/meth.2001.1262
  22. Ivanova A.S., Korotkova D.D., Martynova N.Y., Averyanova O.V., Zaraisky A.G., Tereshina M.B. // Russ. J. Bioorg. Chem. 2018. V. 44. P. 358-361. https://doi.org/10.1134/S106816201803007X

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).