Effect of Different Coatings on Immobilization of Biomolecules in Brush Polymer Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Biochips with protein and oligonucleotide probes are used to analyze protein and nucleic acid samples. The key challenges of the technology are the selection of substrate materials and surface functionalization. Polybutylene terephthalate substrates were modified by coating them with photoactive polymers: poly(ethylene-co-propylene-co-5-methylene-2-norbornene), acetylcellulose, polyvinyl acetate and polyvinyl butyral. The coatings were applied by centrifugation and dried. The effect of the coating on the biochip characteristics was investigated. A matrix of hydrophilic cells made of brush polymers with epoxy groups for immobilization of DNA probes and human immunoglobulins was prepared by photoinitiated radical polymerization. The functionality of probes was investigated by hybridization analysis and reaction with specific antibodies. The binding efficiency of probes to molecular targets was evaluated on biochips with different coatings. Cells on substrates coated with polyvinyl butyral and poly(ethylene-co-propylene-co-5-methylene-2-norbornene) showed the best binding efficiency and weak adsorption of targets, providing high contrast fluorescence images after probe binding. Biochips on such substrates are promising for lab-on-a-chip microanalysis technology.

About the authors

G. F. Shtylev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

I. Yu. Shishkin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

R. A. Miftakhov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: gosha100799@mail.ru
Moscow, 119991 Russia

S. A. Polyakov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

V. E. Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

V. E. Kuznetsova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

S. A. Surzhikov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

V. I. Butvilovskaya

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

V. E. Barsky

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

V. A. Vasiliskov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

O. A. Zasedateleva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

A. V. Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, 119991 Russia

References

  1. Stumpf A., Brandstetter T., Hübner J., Rühe J. // PLoS One. 2019. V. 14. P. e0225525. https://doi.org/10.1371/journal.pone.0225525
  2. Gryadunov D., Dementieva E., Mikhailovich V., Nasedkina T., Rubina A., Savvateeva E., Fesenko E., Chudinov A., Zimenkov D., Kolchinsky A., Zasedatelev A. // Exp. Rev. Mol. Diagn. 2011. V. 11. P. 839- 853. https://doi.org/10.1586/erm.11.73
  3. Mateo C., Fernández-Lorente G., Abian O., Fernández-Lafuente R., Guisán J.M. // Biomacromolecules. 2000. V. 1. P. 739-745. https://doi.org/10.1021/bm000071q
  4. Chi Q., Zhang J., Andersen J.E., Ulstrup J. // J. Phys. Chem. B. 2001. V. 105. P. 4669-4679. https://doi.org/10.1021/jp0105589
  5. Sullivan T.P., Huck W.T. // Eur. J. Org. Chem. 2002. V. 2003. P. 17-29. https://doi.org/10.1002/1099-0690(200301)2003:1%3C17::AID-EJOC17%3E3.0.CO;2-H
  6. Zhi Z.L., Powell A.K., Turnbull J.E. // Anal. Chem. 2006. V. 78. P. 4786-4793. https://doi.org/10.1021/ac060084f
  7. Yi S.S., Noh J.M., Lee Y.S. // J. Mol. Catal. B Enzym. V. 57. P. 123-129. https://doi.org/10.1016/j.molcatb.2008.08.002
  8. Singh V., Ahmad S. // Cellulose. 2012. V. 19. P. 1759-1769. https://doi.org/10.1007/s10570-012-9749-6
  9. Akkoyun A., Bilitewski U. // Biosens. Bioelectron. 2002. V. 17. P. 655-664. https://doi.org/10.1016/s0956-5663(02)00029-5
  10. Guerrero C., Vera C., Serna N., Illanes A. // Bioresour. Technol. 2017. V. 232. P. 53-63. https://doi.org/10.1016/j.biortech.2017.02.003
  11. Kobayashi H., Ikada Y. // Biomaterials. 1991. V. 12. P. 747-751. https://doi.org/10.1016/0142-9612(91)90024-5
  12. Isobe N., Lee D.S., Kwon Y.J., Kimura S., Kuga S., Wada M., Kim U.J. // Cellulose. 2011. V. 18. P. 1251- 1256. https://doi.org/10.1007/s10570-011-9561-8
  13. Mueller M., Bandl C., Kern W. // Polymers. 2022. V. 14. P. 608. https://doi.org/10.3390/polym14030608
  14. Zhao B., Brittain W.J. // Progr. Polym. Sci. 2000. V. 25. P. 677-710. https://doi.org/10.1016/S0079-6700(00)00012-5
  15. Miftakhov R.A., Ikonnikova A.Yu., Vasiliskov V.A., Lapa S.A., Levashova A.I., Kuznetsova V.E., Shershov V.E., Zasedatelev A.S., Nasedkina T.V., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1143-1150. https://doi.org/10.1134/S1068162023050217
  16. Shaskolskiy B., Kandinov I., Kravtsov D., Vinokurova A., Gorshkova S., Filippova M., Kubanov A., Solomka V., Deryabin D., Dementieva E., Gryadunov D. // Polymers. 2021. V. 13. P. 3889. https://doi.org/10.3390/polym13223889
  17. Shtylev G.F., Shishkin I.Yu., Shershov V.E., Kuznetsova V.E., Kachulyak D.A., Butvilovskaya V.I., Levashova A.I., Vasiliskov V.A., Zasedateleva O.A., Chudinov A.V. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 2036-2049. https://doi.org/10.1134/S106816202405033

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).