The Role of Phospholipid Derivatives of Cyclodextrins in the Formation of Stable Lipid Nanoparticles for Drug Delivery

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review article deals with physical methods for investigating the structural characteristics of inclusion complexes of supramers of phospholipid derivatives of cyclodextrins. Phospholipid derivatives of cyclodextrins are formed by attaching a phospholipid moiety to the cyclodextrin molecule. This modification imparts additional structural features to the cyclodextrin, increasing its solubility and stability in aqueous media. These new compounds can self-assemble in aqueous media into different types of supramolecular nanocomplexes. Biomedical applications are envisaged for nanoencapsulation of drug molecules in hydrophobic interchain volumes and nanocavities of amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), antitumour phototherapy, gene delivery, and protection of unstable active ingredients by complexation of inclusions in nanostructured media. The focus is on the study of nanoparticle morphology, as efficient delivery systems must fulfil certain requirements. Classical physical methods cannot provide detailed information on the properties of potential structures for biomedical applications. For this purpose, the search for new non-invasive approaches is necessary.

About the authors

E. D. Belitskaya

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: belitskayakatya@yandex.ru
Moscow, 117997 Russia; Dolgoprudny, 141701 Russia

V. A. Oleinokov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; National Research Nuclear University “MEPhI”

Moscow, 117997 Russia; Moscow, 115409 Russia

A. V. Zalygin

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch

Moscow, 117997 Russia; Moscow, Troitsk, 108840 Russia

References

  1. Spencer D.S., Puranik A.S., Peppas N.A. // Curr. Opin. Chem. Eng. 2015. V. 7. P. 84-92. https://doi.org/10.1016/j.coche.2014.12.003
  2. Hassan S., Prakash G., Ozturk A., Saghazadeh S., Sohail M.F., Seo J., Dokmeci M., Zhang Y.S., Khademhosseini A. // Nano Today. 2017. V. 15. P. 91-106. https://doi.org/10.1016/j.nantod.2017.06.008
  3. Singh R., Lillard J.W. // Exp. Mol. Pathol. 2009. V. 86. P. 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004
  4. Hu C.M.J., Fang R.H., Luk B.T., Zhang L. // Nanoscale. 2014. V. 6. P. 65-75. https://doi.org/10.1039/C3NR05444F
  5. Lakkakula J.R., Krause R.W.M. // Nanomedicine. 2014. V. 9. P. 877-894. https://doi.org/10.2217/nnm.14.41
  6. Crini G. // Chem. Rev. 2014. V. 114. P. 10940-10975. https://doi.org/10.1021/cr500081p
  7. Biwer A., Antranikian G., Heinzle E. // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 609-617. https://doi.org/10.1007/s00253-002-1057-x
  8. Bonnet V., Gervaise C., Djedaïni-Pilard F., Furlan A., Sarazin C. // Drug Discov. Today. 2015. V. 20. P. 1120- 1126. https://doi.org/10.1016/j.drudis.2015.05.008
  9. Mazzaglia A., Bondì M.L., Scala A., Zito F., Barbieri G., Crea F., Vianelli G., Mineo P., Fiore T., Pellerito C., Pellerito L., Costa M.A. // Biomacromolecules. 2013. V. 14. P. 3820-3829. https://doi.org/10.1021/bm400849n
  10. Aranda C., Urbiola K., Méndez Ardoy A., García Fernández J.M., Ortiz Mellet C., de Ilarduya C.T. // Eur. J. Pharm. Biopharm. 2013. V. 85. P. 390-397. https://doi.org/10.1016/j.ejpb.2013.06.011
  11. Roux M., Sternin E., Bonnet V., Fajolles C., Djedaïni-Pilard F. // Langmuir. 2013. V. 29. P. 3677-3687. https://doi.org/10.1021/la304524a
  12. Niikura K., Matsunaga T., Suzuki T., Kobayashi S., Yamaguchi H., Orba Y., Kawaguchi A., Hasegawa H., Kajino K., Ninomiya T., Ijiro K., Sawa H. // ACS Nano. 2013. V. 7. P. 3926-3938. https://doi.org/10.1021/nn3057005
  13. Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. // Chem. Soc. Rev. 2015. V. 44. P. 6094-6121. https://doi.org/10.1039/c5cs00217f
  14. Gervaise C., Bonnet V., Wattraint O., Aubry F., Sarazin C., Jaffrès P.A., Djedaïni-Pilard F. // Biochimie. 2015. V. 94. P. 66-74. https://doi.org/10.1016/j.biochi.2011.09.005
  15. Zerkoune L., Angelova A., Lesieur S. // Nanomaterials (Basel). 2014. V. 4. P. 741-765. https://doi.org/10.3390/nano4030741
  16. Auzély-Velty R., Djedaïni-Pilard F., Désert S., Perly B., Zemb T.H. // Langmur. 2000. V. 16. P. 3727-3734. https://doi.org/10.1021/la991361z
  17. Nozaki T., Maeda Y., Ito K., Kitano H. // Macromolecules. 1995. V. 28. P. 522-524. https://doi.org/10.1021/ma00106a016
  18. Kauscher U., Stuart M.C.A., Druc ker P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 7377-7383. https://doi.org/10.1021/la3045434
  19. Erdogar N., Esendaglı G., Nielsen T.T., Şen M., Öner L., Bilensoy E. // Int. J. Pharm. 2016. V. 509. P. 375-390. https://doi.org/10.1016/j.ijpharm.2016.05.040
  20. Shao S., Si J., Tang J., Sui M., Shen Y. // Macromolecules. 2014. V. 47. P. 916-921. https://doi.org/10.1021/ma4025619
  21. Moutard S., Perly B., Godé P., Demailly G., Djedaïni-Pilard F. // J. Incl. Phenom. 2002. V. 44. P. 317 -322.
  22. Geze A., Choisnard L., Putaux J.L., Wouessidjewe D. // Mater. Sci. Eng. 2009. V. 29. P. 458-462. https://doi.org/10.1016/j.msec.2008.08.027
  23. Pedersen N.R., Kristensen J.B., Bauw G., Ravoo B.J., Darcy R., Larsena K.L., Pedersen L.H. // Tetrahedron Asymmetry. 2005. V. 16. P. 615-622. https://doi.org/10.1016/j.tetasy.2004.12.009
  24. Yaméogo J.B., Geze A., Choisnard L., Putaux J.L., Gansané A., Sirima S.B., Semdé R., Wouessidjewe D. // Eur. J. Pharm. Biopharm. 2012. V. 80. P. 508-517. https://doi.org/10.1016/j.ejpb.2011.12.007
  25. Essa S., Rabanel J.M., Hildgen P. // Int. J. Pharm. 2010. V. 388. P. 263-273. https://doi.org/10.1016/j.ijpharm.2009.12.059
  26. Bhattacharjee S. // J. Control. Release. 2016. V. 235. P. 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
  27. Lesieur S., Charon D., Lesieur P., Ringard-Lefebvre C., Muguet V., Duchêne D., Wouessidjewe D. // Chem. Phys. Lipids. 2000. V. 106. P. 127-144. https://doi.org/10.1016/S0009-3084(00)00149-3
  28. Kasselouri A., Coleman A.W., Baszkin A. // J. Colloid Interface Sci. 1996. V. 180. P. 384-397. https://doi.org/10.1006/jcis.1996.0317
  29. LoPresti C., Massignani M., Fernyhough C., Blanazs A., Ryan A.J., Madsen J., Warren N.J., Armes S.P., Lewis A.L., Chirasatitsin S., Engler A.J., Battaglia G. // ACS Nano. 2011. V. 5. P. 1775-1784. https://doi.org/10.1021/nn102455z
  30. Putaux J.L., Lancelon-Pin C., Legrand F.X., Pastrello M., Choisnard L., Gèze A., Rochas C., Wouessidjewe D. // Langmuir. 2017. V. 33. P. 7917-7928. https://doi.org/10.1021/acs.langmuir.7b01136
  31. Oliva E., Mathiron D., Rigaud S., Monflier E., Sevin E., Bricout H., Tilloy S., Gosselet F., Fenart L., Bonnet V., Pilard S., Diedaini-Pilard F. // Biomolecules. 2020. V. 10. P. 339. https://doi.org/10.3390/biom10020339
  32. Feigin L.A., Svergun D.I. // Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: Plenum Press, 1987. V. 1. P. 14-15. https://link.springer.com/book/10.1007/978-1-47576624-0
  33. Auzély-Velty R., Perly B., Taché O., Zemb T., Jéhan P., Guenot P., Dalbiez J.-P., Djedaıni-Pilard F. // Carbohydr. Res. 1999. V. 318. P. 82-90. https://doi.org/10.1016/S0008-6215(99)00086-5
  34. Roling O., Wendeln C., Kauscher U., Seelheim P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 10174-10182. https://doi.org/10.1021/la4011218
  35. Choisnard L., Gèze A., Putaux J.L., Wong Y.S., Wouessidjewe D. // Biomacromolecules. 2006. V. 7. P. 515- 520. https://doi.org/10.1021/bm0507655
  36. Godinho B.M.D.C., Ogier J.R., Darcy R., O’Driscoll C.M., Cryan J.F. // Mol. Pharm. 2013. V. 10. P. 640-649. https://doi.org/10.1021/mp3003946
  37. Chen P., Hub J.S. // Biophys. J. 2015. V. 108. P. 2573- 2584. https://doi.org/10.1016/j.bpj.2015.03.062
  38. Vaskan I.S., Prikhodko A.T., Petoukhov M.V., Shtykova E.V., Bovin N.V., Tuzikov A.B., Oleinikov V.A., Zalygin A.V. // Colloids and Surfaces B: Biointerfaces. 2023. V. 224. P. 113183. https://doi.org/10.1016/j.colsurfb.2023.113183
  39. Zalygin A., Solovyeva D., Vaskan I., Henry S., Schaefer M., Volynsky P., Tuzikov A., Korchagina E., Ryzhov I., Nizovtsev A., Mochalov K., Efremov R., Shtykova E., Oleinikov V., Bovin N. // ChemistryOpen. 2020. V. 9. P. 641-648. https://doi.org/10.1002/open.201900276
  40. Zhou X., Liang J.F. // J. Photochem. Photobiol. A Chemistry. 2017. V. 349. P. 124-128. https://doi.org/10.1016/j.jphotochem.2017.09.032

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).