Ursolic Acid: Sources, Synthesis, Properties, Modifications, Application
- Авторлар: Kiseleva D.A.1, An’kov S.V.1, Tolstikova T.G.1
-
Мекемелер:
- Novosibirsk Institute of Organic Chemistry SB RAS
- Шығарылым: Том 51, № 2 (2025)
- Беттер: 207-232
- Бөлім: Articles
- URL: https://journals.rcsi.science/0132-3423/article/view/291756
- DOI: https://doi.org/10.31857/S0132342325020037
- EDN: https://elibrary.ru/LCZXFU
- ID: 291756
Дәйексөз келтіру
Аннотация
Ursolic acid (UA) is a common natural compound of the pentacyclic triterpenoid class with multifaceted pharmacological activity. The diversity of sources emphasizes the potential application of UA from natural plant components for various therapeutic and preventive purposes. This review presents the current state of knowledge on the properties of this widespread bioactive compound, as well as information on its sources, biosynthesis and applications in pharmaceutical, cosmetic and agricultural fields. Despite promising pharmacological effects, this review recognizes the existing obstacles in the clinical application of UA due to the low bioavailability of the triterpenoid, highlighting the need to modify delivery forms and/or improve the original UA framework through chemical modifications.
Негізгі сөздер
Толық мәтін

Авторлар туралы
D. Kiseleva
Novosibirsk Institute of Organic Chemistry SB RAS
Хат алмасуға жауапты Автор.
Email: dasha.halikova@mail.ru
Ресей, prosp. Lavrentieva 9, Novosibirsk, 630090
S. An’kov
Novosibirsk Institute of Organic Chemistry SB RAS
Email: dasha.halikova@mail.ru
Ресей, prosp. Lavrentieva 9, Novosibirsk, 630090
T. Tolstikova
Novosibirsk Institute of Organic Chemistry SB RAS
Email: dasha.halikova@mail.ru
Ресей, prosp. Lavrentieva 9, Novosibirsk, 630090
Әдебиет тізімі
- Similie D., Minda D., Bora L., Kroškins V., Lugiņina J., Turks M., Dehelean C.A., Danciu C. // Antioxidants. 2024. V. 13. P. 952. https://doi.org/10.3390/ANTIOX13080952
- Oboh M., Govender L., Siwela M., Mkhwanazi B.N. // Molecules. 2021. V. 26. P. 7243. https://doi.org/10.3390/molecules26237243
- Namdeo P., Gidwani B., Tiwari S., Jain V., Joshi V., Shukla S.S., Pandey R.K., Vyas A. // J. Sci. Food Agric. 2023. V. 103. P. 4275–4292. https://doi.org/10.1002/JSFA.12423
- Liu G., Qin P., Cheng X., Wu L., Wang R., Gao W. // Front. Vet. Sci. 2023. V. 10. P. 251248. https://doi.org/10.3389/FVETS.2023.1251248
- Woźniak Ł., Szakiel A., Głowacka A., Rozpara E., Marszałek K., Skąpska S. // Molecules. 2023. V. 28. P. 2584. https://doi.org/10.3390/MOLECULES28062584/S1
- Wu X., Yin H., Shi Z., Chen Y., Qi K., Qiao X., Wang G., Cao P., Zhang S. // Front. Plant. Sci. 2018. V. 9. P. 347625. https://doi.org/10.3389/FPLS.2018.00679
- Vilkickyte G., Petrikaite V., Marksa M., Ivanauskas L., Jakstas V., Raudone L. // Antioxidants. 2023. V. 12. P. 465. https://doi.org/10.3390/ANTIOX12020465
- Lee S.Y., Kim Y.J., Chung S.O., Park S.U. // EXCLI J. 2016. V. 15. P. 221–228. https://doi.org/10.17179/EXCLI2016-159
- Bars-Cortina D., Macià A., Iglesias I., Romero M.P., Motilva M.J. // J. Agric. Food Chem. 2017. V. 65. P. 1684–1696. https://doi.org/10.1021/ACS.JAFC.6B02931
- Grigoras C.G., Destandau E., Fougère L., Elfakir C. // Ind. Crops Prod. 2013. V. 49. P. 794–804. https://doi.org/10.1016/J.INDCROP.2013.06.026
- Wildner A.C., Ferreira P.L., Oliveira S.S., Gnoatto S.B., Bergold A.M. // J. Appl. Pharm. Sci. 2018. V. 8. P. 158– 165. https://doi.org/10.7324/JAPS.2018.8922
- Leide J., Xavier de Souza A., Papp I., Riederer M. // Sci. Hortic. 2018. V. 229. P. 137–147. https://doi.org/10.1016/J.SCIENTA.2017.10.042
- Belding R.D., Blankenship S.M., Young E., Leidy R.B. // J. Am. Soc. Hortic. Sci. 1998. V. 123. P. 348–356.
- Dashbaldan S., Pączkowski C., Szakiel A. // Int. J. Mol. Sci. 2020. V. 21. P. 9762. https://doi.org/10.3390/IJMS21249762
- Dashbaldan S., Becker R., Pączkowski C., Szakiel A. // Molecules. 2019. V. 24. P. 3826. https://doi.org/10.3390/molecules24213826
- Yin Y., Bi Y., Chen S., Li Y., Wang Y., Ge Y., Ding B., Li Y., Zhang Z. // Sci. Hortic. 2011. V. 129. P. 577–582. https://doi.org/10.1016/j.scienta.2011.04.028
- Diaz-Barradas M.C., Costa C., Correia O., León-González A.J., Navarro-Zafra I., Zunzunegui M., Alvarez-Cansino L., Martín-Cordero C. // Biochem. Syst. Ecol. 2016. V. 67. P. 103–109. https://doi.org/10.1016/j.bse.2016.05.009
- van der Heijden R., Threlfall D.R., Verpoorte R., Whitehead I.M. // Phytochemistry. 1989. V. 28. P. 2981–2988. https://doi.org/10.1016/0031-9422(89)80264-X
- Li H., Liu Y., Guo S., Shi M., Qin S., Zeng C. // Foods. 2023. V. 12. P. 310. https://doi.org/10.3390/FOODS12020310
- López-Hortas L., Pérez-Larrán P., González-Muñoz M.J., Falqué E., Domínguez H. // Food Res. Int. 2018. V. 103. P. 130–149. https://doi.org/10.1016/J.FOODRES.2017.10.028
- Wójciak-Kosior M., Sowa I., Kocjan R., Nowak R. // Ind. Crops Prod. 2013. V. 44. P. 373–377. https://doi.org/10.1016/J.INDCROP.2012.11.018
- Szakiel A., Mroczek A. // Acta Biochim. Pol. 2007. V. 54. P. 733–740. https://doi.org/10.18388/abp.2007_3145
- Gupta A., Maheta P., Chauhan R., Pandey S., Yadav J.S., Shah S. // Pharmacogn. J. 2018. V. 10. P. 179–185. https://doi.org/10.5530/pj.2018.1.30
- Попов С.А., Оганесян Э.Т., Терехов А.Ю., Колесникова И.В., Щукин Г.И., Шевцов С.А., Митасов М.М. // Патент RU2414234C1, 2011.
- Xia E.Q., Yu Y.Y., Xu X.R., Deng G.F., Guo Y.J., Li H. // Ultrason Sonochem. 2012. V. 19. P. 772–776. https://doi.org/10.1016/J.ULTSONCH.2011.11.014
- Baranauskaite J., Jakštas V., Ivanauskas L., Kopustinskiene D.M., Drakšiene G., Masteikova R., Bernatoniene J. // Nat. Prod. Res. 2016. V. 30. P. 672– 674. https://doi.org/10.1080/14786419.2015.1038998
- Aydin T., Saglamtas R., Gumustas M., Genisel M., Kazaz C., Cakir A. // Chem. Biodivers. 2023. V. 20. P. e202300414. https://doi.org/10.1002/CBDV.202300414
- Шишов А.Ю. // Труды Кольского научного центра РАН. Серия: Технические науки. 2022. Т. 13. С. 278– 282. https://doi.org/10.37614/2949-1215.2022.13.1.048
- Silva N.H.C.S., Morais E.S., Freire C.S.R., Freire M.G., Silvestre A.J.D. // Molecules. 2020. V. 25. P. 210. https://doi.org/10.3390/MOLECULES25010210
- Pironi A.M., de Araújo P.R., Fernandes M.A., Salgado H.R.N., Chorilli M. // Crit. Rev. Anal. Chem. 2018. V. 48. P. 86–93. https://doi.org/10.1080/10408347.2017.1390425
- Kashyap D., Tuli H.S., Sharma A.K. // Life Sci. 2016. V. 146. P. 201–213. https://doi.org/10.1016/J.LFS.2016.01.017
- Seo D.Y., Lee S.R., Heo J.W., No M.H., Rhee B.D., Ko K.S., Kwak H.B., Han J. // Korean J. Physiol. Pharmacol. 2018. V. 22. P. 235–248. https://doi.org/10.4196/KJPP.2018.22.3.235
- Thimmappa R., Geisler K., Louveau T., O’Maille P., Osbourn A. // Annu. Rev. Plant Biol. 2014. V. 65. P. 225–257. https://doi.org/10.1146/ANNUREV-ARPLANT-050312-120229/CITE/REFWORKS
- Ladhari A., Chappell J. // Plant Physiol. Biochem. 2019. V. 144. P. 73–84. https://doi.org/10.1016/J.PLAPHY.2019.09.035
- Amidon G.L., Lennernäs H., Shah V.P., Crison J.R. // Pharm. Res. 1995. V. 12. P. 413–420. https://doi.org/10.1023/A:1016212804288
- Furtado N.A.J.C., Pirson L., Edelberg H., Miranda L.M., Loira-Pastoriza C., Preat V., Larondelle Y., André C.M. // Molecules. 2017. V. 22. P. 400. https://doi.org/10.3390/MOLECULES22030400
- Song J., Wang Y., Song Y., Chan H., Bi C., Yang X., Yan R., Wang Y., Zheng Y. // AAPS Pharm. Sci. Tech. 2014. V. 15. P. 11–19. https://doi.org/10.1208/S12249-013-0028-0
- Dar B.A., Lone A.M., Shah W.A., Qurishi M.A. // Eur. J. Med. Chem. 2016. V. 111. P. 26–32. https://doi.org/10.1016/J.EJMECH.2016.01.026
- Sun Q., He M., Zhang M., Zeng S., Chen L., Zhou L., Xu H. // Fitoterapia. 2020. V. 147. P. 104735. https://doi.org/10.1016/J.FITOTE.2020.104735
- Gao S., Basu S., Yang Z., Deb A., Hu M. // Curr. Drug Targets. 2012. V. 13. P. 1885–1899. https://doi.org/10.2174/138945012804545498
- Liao Q., Yang W., Jia Y., Chen X., Gao Q., Bi K. // Yakugaku Zasshi. 2005. V. 125. P. 509–515. https://doi.org/10.1248/YAKUSHI.125.509
- Mishra V., Soren A.D., Yadav A.K. // Futur. J. Pharm. Sci. 2021. V. 7. P. 39. https://doi.org/10.1186/S43094-020-00173-4
- Borges R.S., Ortiz B.L.S., Pereira A.C.M., Keita H., Carvalho J.C.T. // J. Ethnopharmacol. 2019. V. 229. P. 29–45. https://doi.org/10.1016/J.JEP.2018.09.038
- Hsieh T.J., Chen P.Y., Wang H.Y., Wu C.S., Liu L.F., Wu K.L., Kuo S.M. // Antioxidants. 2024. V. 13. P. 702. https://doi.org/10.3390/ANTIOX13060702
- Türkoğlu A., İbiloğlu İ., Kaplan İ., Arslan S., HalilÖcal İ., Gümüş M. // Gac. Med. Mex. 2023. V. 159. P. 337–343. https://doi.org/10.24875/GMM.23000194
- Hyun M.K., Kim D.H., Park C.H., Noh S.G., Choi S., Lee J.Y., Choi J.H., Park D., Choi Y.J., Chung H.Y. // J. Mol. Med. 2022. V. 100. P. 1455–1464. https://doi.org/10.1007/S00109-022-02243-X
- Zhao J., Zheng H., Sui Z., Jing F., Quan X., Zhao W., Liu G. // Cytokine. 2019. V. 123. P. 154726. https://doi.org/10.1016/J.CYTO.2019.05.013
- Zhao M., Wu F., Tang Z., Yang X., Liu Y., Wang F., Chen B. // Front. Pharmacol. 2023. V. 14. P. 1256946. https://doi.org/10.3389/FPHAR.2023.1256946
- Zerin T., Lee M., Jang W.S., Nam K.W., Song H.Y. // Mol. Med. Rep. 2016. V. 13. P. 2736–2744. https://doi.org/10.3892/MMR.2016.4840
- Pitaloka D.A.E., Syaputri Y., Nurlilasari P., Khairunnisa S.F., Saallah S. // Drug Des. Devel Ther. 2024. V. 18. P. 1969. https://doi.org/10.2147/DDDT.S454399
- Shen J., Fu Y., Liu F., Ning B., Jiang X. // Inflammation. 2023. V. 46. P. 1749–1763. https://doi.org/10.1007/S10753-023-01839-W
- Rai S.N., Zahra W., Singh S.S., Birla H., Keswani C., Dilnashin H., Rathore A.S., Singh R., Singh R.K., Singh S.P. // Neurotox Res. 2019. V. 36. P. 452–462. https://doi.org/10.1007/S12640-019-00038-6
- Peshattiwar V., Muke S., Kaikini A., Bagle S., Dighe V., Sathaye S. // Brain Res. Bull. 2020. V. 160. P. 150–161. https://doi.org/10.1016/J.BRAINRESBULL.2020.03.003
- Salau V.F., Erukainure O.L., Ayeni G., Ibeji C.U., Islam M.S. // J. Food Biochem. 2021. V. 45. P. e13597. https://doi.org/10.1111/JFBC.13597
- Chen Y., Qin C., Huang J., Tang X., Liu C., Huang K., Xu J., Guo G., Tong A., Zhou L. // Cell Prolif. 2020. V. 53. P. e12781. https://doi.org/10.1111/CPR.12781
- Srinivasan R., Aruna A., Lee J.S., Kim M., Shivakumar M.S., Natarajan D. // Biomed. Res. Int. 2020. V. 2020. P. 8716927. https://doi.org/10.1155/2020/8716927
- Ding H., Wang H., Zhu L., Wei W. // Neurochem. Res. 2017. V. 42. P. 337–346. https://doi.org/10.1007/S11064-016-2077-8
- Saravanan R., Viswanathan P., Pugalendi K.V. // Life Sci. 2006. V. 78. P. 713–718. https://doi.org/10.1016/J.LFS.2005.05.060
- Senthil S., Chandramohan G., Pugalendi K.V. // Int. J. Cardiol. 2007. V. 119. P. 131–133. https://doi.org/10.1016/J.IJCARD.2006.07.108
- Han G.Y., Park J.H., Oh K.B., Lee S.J. // J. Life Sci. 2013. V. 23. P. 1223–1229. https://doi.org/10.5352/JLS.2013.23.10.1223
- Bacanlı M., Başaran A.A., Başaran N. // Drug Chem. Toxicol. 2017. V. 40. P. 256–262. https://doi.org/10.1080/01480545.2016.1209680
- Kadasah S.F., Radwan M.O. // Biomedicines. 2023. V. 11. P. 2845. https://doi.org/10.3390/BIOMEDICINES11102845
- Villarroya F., Iglesias R., Giralt M. // PPAR Res. 2007. V. 2007. P. 74364. https://doi.org/10.1155/2007/74364
- Jia Y., Bhuiyan M.J.H., Jun H.J., Lee J.H., Hoang M.H., Lee H.J., Kim N., Lee D., Hwang K.Y., Hwang B.Y., Choi D.W., Lee S.J. // Bioorg. Med. Chem. Lett. 2011. V. 21. P. 5876–5880. https://doi.org/10.1016/j.bmcl.2011.07.095
- Wang L., Wang G.L., Liu J.H., Li D., Zhu D.Z., Wu L.N. // Chin. J. Intgr. Med. 2012. V. 10. P. 793–799. https://doi.org/10.3736/JCIM20120710
- Chu X., He X., Shi Z., Li C., Guo F., Li S., Li Y., Na L., Sun C. // Mol. Nutr. Food Res. 2015. V. 59. P. 1491– 1503. https://doi.org/10.1002/MNFR.201400670
- Liu Y., Zheng J.Y., Wei Z.T., Liu S.K., Sun J.L., Mao Y.H., Xu Y.D., Yang Y. // Front. Pharmacol. 2022. V. 13. P. 969207. https://doi.org/10.3389/FPHAR.2022.969207
- Jung S.H., Ha Y.J., Shim E.K., Choi S.Y., Jin J.L., Yun-Choi H.S., Lee J.R. // Biochem. J. 2007. V. 403. P. 243–250. https://doi.org/10.1042/BJ20061123
- Yang K., Chen Y., Zhou J., Ma L., Shan Y., Cheng X., Wang Y., Zhang Z., Ji X., Chen L., Dai H., Zhu B., Li C., Tao Z., Hu X., Yin W. // Br. J. Pharmacol. 2019. V. 176. P. 4609–4624. https://doi.org/10.1111/BPH.14793
- Zafar S., Khan K., Hafeez A., Irfan M., Armaghan M., Rahman A., Gürer E.S., Sharifi-Rad J., Butnariu M., Bagiu I.C., Bagiu R.V. // Cancer Cell Int. 2022. V. 22. P. 399. https://doi.org/10.1186/S12935-022-02804-7
- Lewinska A., Adamczyk-Grochala J., Kwasniewicz E., Deregowska A., Wnuk M. // Apoptosis. 2017. V. 22. P. 800–815. https://doi.org/10.1007/S10495-017-1353-7
- Zhao H., Tang S., Tao Q., Ming T., Lei J., Liang Y., Peng Y., Wang M., Liu M., Yang H., Ren S., Xu H. // J. Agric. Food Chem. 2023. V. 71. P. 3981–3993. https://doi.org/10.1021/ACS.JAFC.2C06775
- Li W., Zhang H., Nie M., Tian Y., Chen X., Chen C., Chen H., Liu R. // Acta Biochim. Biophys. Sin. 2017. V. 49. P. 367–373. https://doi.org/10.1093/ABBS/GMX012
- Lin J., Chen Y., Wei L., Hong Z., Sferra T.J., Peng J. // Int. J. Oncol. 2013. V. 43. P. 1666–1674. https://doi.org/10.3892/IJO.2013.2101
- Limami Y., Pinon A., Wahnou H., Oudghiri M., Liagre B., Simon A., Duval R.E. // Molecules. 2023. V. 28. P. 7897. https://doi.org/10.3390/MOLECULES28237897
- Lee N.R., Meng R.Y., Rah S.Y., Jin H., Ray N., Kim S.H., Park B.H., Kim S.M. // Int. J. Mol. Sci. 2020. V. 21. P. 9409. https://doi.org/10.3390/IJMS21249409
- Wang M., Yu H., Wu R., Chen Z.Y., Hu Q., Zhang Y.F., Gao S.H., Zhou G.B. // Int. J. Mol. Med. 2020. V. 46. P. 1816–1826. https://doi.org/10.3892/IJMM.2020.4714
- Gudoityte E., Arandarcikaite O., Mazeikiene I., Bendokas V., Liobikas J. // Int. J. Mol. Sci. 2021. V. 22. P. 4599. https://doi.org/10.3390/IJMS22094599/S1
- Castrejón-Jiménez N.S., Leyva-Paredes K., Baltierra-Uribe S.L., Castillo-Cruz J., Campillo-Navarro M., Hernández-Pérez A.D., Luna-Angulo A.B., Chacón-Salinas R., Coral-Vázquez R.M., EstradaGarcía I., Sánchez-Torres L.E., Torres-Torres C., García-Pérez B.E. // Molecules. 2019. V. 24. P. 3444. https://doi.org/10.3390/MOLECULES24193444
- Li J., Wang R., Zhang Y., Jia R., Zhao K., Zhang S., Liang H. // Int. J. Clin. Exp. Med. 2019. V. 12. P. 3612–3621.
- Kornel A., Nadile M., Retsidou M.I., Sakellakis M., Gioti K., Beloukas A., Sze N.S.K., Klentrou P., Tsiani E. // Int. J. Mol. Sci. 2023. V. 24. P. 7414. https://doi.org/10.3390/IJMS24087414
- Zhang T., Su J., Wang K., Zhu T., Li X. // Neurosci. Lett. 2014. V. 579. P. 12–17. https://doi.org/10.1016/J.NEULET.2014.07.005
- Hsu Y.L., Kuo P.L., Lin C.C. // Life Sci. 2004. V. 75. P. 2303–2316. https://doi.org/10.1016/J.LFS.2004.04.027
- Manu K.A., Kuttan G. // Int. Immunopharmacol. 2008. V. 8. P. 974–981. https://doi.org/10.1016/J.INTIMP.2008.02.013
- Farhadi F., Baradaran Rahimi V., Mohamadi N., Askari V.R. // BioFactors. 2023. V. 49. P. 478–501. https://doi.org/10.1002/BIOF.1929
- Huang C.Y., Lin C.Y., Tsai C.W., Yin M.C. // Toxicol. In Vitro. 2011. V. 25. P. 1274–1280. https://doi.org/10.1016/J.TIV.2011.04.014
- Hanahan D., Weinberg R.A. // Cell. 2011. V. 144. P. 646–674. https://doi.org/10.1016/J.CELL.2011.02.013
- Guo W., Xu B., Wang X., Zheng B., Du J., Liu S. // Cancer Manag. Res. 2020. V. 12. P. 3469. https://doi.org/10.2147/CMAR.S241957
- Bose S., Banerjee S., Mondal A., Chakraborty U., Pumarol J., Croley C.R., Bishayee A. // Cells. 2020. V. 9. P. 1451. https://doi.org/10.3390/CELLS9061451
- Yang M., Hu C., Cao Y., Liang W., Yang X., Xiao T. // Front. Pharmacol. 2021. V. 11. P. 622212. https://doi.org/10.3389/FPHAR.2020.622212
- Besasie B.D., Saha A., DiGiovanni J., Liss M.A. // Urologia. 2024. V. 91. P. 90. https://doi.org/10.1177/03915603231202304
- Mioc M., Milan A., Malița D., Mioc A., Prodea A., Racoviceanu R., Ghiulai R., Cristea A., Căruntu F., Șoica C. // Int. J. Mol. Sci. 2022. V. 23. P. 7740. https://doi.org/10.3390/IJMS23147740
- Chen Y., Xu H., Xu H., Liu C., Zhan M., Wang Z., Gu M., Chen Q., Xu B. // Int. J. Biol. Sci. 2023. V. 19. P. 4242. https://doi.org/10.7150/IJBS.85739
- Rai S.N., Yadav S.K., Singh D., Singh S.P. // J. Chem. Neuroanat. 2016. V. 71. P. 41–49. https://doi.org/10.1016/J.JCHEMNEU.2015.12.002
- Bang Y., Kwon Y., Kim M., Moon S.H., Jung K., Choi H.J. // Acta Pharmacol. Sin. 2023. V. 44. P. 752. https://doi.org/10.1038/S41401-022-00988-2
- Sun A., Li Y.F., Miao Y., Wang H.X., Zhang L.L. // Heliyon. 2024. V. 10. P. e34113. https://doi.org/10.1016/J.HELIYON.2024.E34113
- Wang Y.J., Lu J., Wu D.M., Zheng Z.H., Zheng Y.L., Wang X.X., Ruan J., Sun X., Shan Q., Zhang Z.F. // Neurobiol. Learn Mem. 2011. V. 96. P. 156–165. https://doi.org/10.1016/J.NLM.2011.03.010
- Li L., Zhang X., Cui L., Wang L., Liu H., Ji H., Du Y. // Brain Res. 2013. V. 1497. P. 32–39. https://doi.org/10.1016/J.BRAINRES.2012.12.032
- Honarvar F., Hojati V., Bakhtiari N., Vaezi G., Javan M. // Iran J. Pharm. Res. 2019. V. 18. P. 1978– 1988. https://doi.org/10.22037/IJPR.2019.112181.13582
- Zhang Y., Li X., Ciric B., Curtis M.T., Chen W.J., Rostami A., Zhang G.X. // Proc. Natl. Acad. Sci. USA. 2020. V. 117. P. 9082–9093. https://doi.org/10.1073/PNAS.2000208117
- Fricker M., Tolkovsky A.M., Borutaite V., Coleman M., Brown G.C. // Physiol. Rev. 2018. V. 98. P. 813. https://doi.org/10.1152/PHYSREV.00011.2017
- Liu K.M., Huang Y., Wan P.P., Lu Y.H., Zhou N., Li J.J., Yu C.Y., Chou J.J., Zhang L., Zhang C., Qiang Y.Y., Zhang R., Guo L. // Front. Pharmacol. 2022. V. 13. P. 877898. https://doi.org/10.3389/FPHAR.2022.877898
- Kunkel S.D., Elmore C.J., Bongers K.S., Ebert S.M., Fox D.K., Dyle M.C., Bullard S.A., Adams C.M. // PLoS One. 2012. V. 7. P. e39332. https://doi.org/10.1371/journal.pone.0039332
- Ma J.Q., Ding J., Zhang L., Liu C.M. // Clin. Res. Hepatol. Gastroenterol. 2015. V. 39. P. 188–197. https://doi.org/10.1016/J.CLINRE.2014.09.007
- Yang L., Tang Q., Wu J., Chen Y., Zheng F., Dai Z., Hann S.S. // J. Exp. Clin. Cancer Res. 2016. V. 35. P. 59. https://doi.org/10.1186/S13046-016-0330-2
- Cheng J., Liu Y., Liu Y., Liu D., Liu Y., Guo Y., Wu Z., Li H., Wang H. // J. Food Sci. 2020. V. 85. P. 3998– 4008. https://doi.org/10.1111/1750-3841.15475
- Katashima C.K., Silva V.R., Gomes T.L., Pichard C., Pimentel G.D. // Obesity Rev. 2017. V. 18. P. 700–711. https://doi.org/10.1111/OBR.12523
- Li S., Meng F., Liao X., Wang Y., Sun Z., Guo F., Li X., Meng M., Li Y., Sun C. // PLoS One. 2014. V. 9. P. e86724. https://doi.org/10.1371/JOURNAL.PONE.0086724
- Ma J.Q., Ding J., Zhang L., Liu C.M. // Environ. Toxicol. Pharmacol. 2014. V. 37. P. 975–983. https://doi.org/10.1016/J.ETAP.2014.03.011
- Gan D., Zhang W., Huang C., Chen J., He W., Wang A., Li B., Zhu X. // J. Cell Physiol. 2018. V. 233. P. 6799– 6813. https://doi.org/10.1002/JCP.26541
- Kunkel S.D., Suneja M., Ebert S.M., Bongers K.S., Fox D.K., Malmberg S.E., Alipour F., Shields R.K., Adams C.M. // Cell Metab. 2011. V. 13. P. 627–638. https://doi.org/10.1016/J.CMET.2011.03.020
- Rathor R., Agrawal A., Kumar R., Suryakumar G., Singh S.N. // IUBMB Life. 2021. V. 73. P. 375–389. https://doi.org/10.1002/IUB.2435
- Bakhtiari N., Hosseinkhani S., Tashakor A., Hemmati R. // Med. Hypotheses. 2015. V. 85. P. 1–6. https://doi.org/10.1016/J.MEHY.2015.02.014
- Jeong J.W., Shim J.J., Choi I.D., Kim S.H., Ra J., Ku H.K., Lee D.E., Kim T.Y., Jeung W., Lee J.H., Lee K.W., Huh C.S., Sim J.H., Ahn Y.T. // J. Med. Food. 2015. V. 18. P. 1380–1386. https://doi.org/10.1089/JMF.2014.3401
- Do Nascimento P.G.G., Lemos T.L.G., Bizerra A.M.C., Arriaga A.M.C., Ferreira D.A., Santiago G.M.P., Braz-Filho R., Costa J.G.M. // Molecules. 2014. V. 19. P. 1317–1327. https://doi.org/10.3390/MOLECULES19011317
- Liu G., Qin P., Cheng X., Wu L., Zhao W., Gao W. // Front. Microbiol. 2024. V. 15. P. 1389242. https://doi.org/10.3389/FMICB.2024.1389242
- Wang C.M., Chen H.T., Wu Z.Y., Jhan Y.L., Shyu C.L., Chou C.H. // Molecules. 2016. V. 21. P. 139. https://doi.org/10.3390/MOLECULES21020139
- Pereira V.V., Pereira N.R., Pereira R.C.G., Duarte L.P., Takahashi J.A., Silva R.R. // Chem. Biodivers. 2022. V. 19. P. e202100566. https://doi.org/10.1002/CBDV.202100566
- Wrońska N., Szlaur M., Zawadzka K., Lisowska K. // Molecules. 2022. V. 27. P. 847. https://doi.org/10.3390/MOLECULES27030847
- Opperman T.J., Nguyen S.T. // Front. Microbiol. 2015. V. 6. P. 421. https://doi.org/10.3389/FMICB.2015.00421
- Oloyede H.O.B., Ajiboye H.O., Salawu M.O., Ajiboye T.O. // Microb. Pathog. 2017. V. 111. P. 338– 344. https://doi.org/10.1016/J.MICPATH.2017.08.012
- Kurek A., Nadkowska P., Pliszka S., Wolska K.I. // Phytomedicine. 2012. V. 19. P. 515–519. https://doi.org/10.1016/J.PHYMED.2011.12.009
- Zhao J., Chen J., Liu T., Fang J., Wan J., Zhao J., Li W., Liu J., Zhao X., Chen S. // J. Huazhong Univ. Sci. Technol. Med. Sci. 2012. V. 32. P. 883–887. https://doi.org/10.1007/S11596-012-1052-0
- Kong L., Li S., Liao Q., Zhang Y., Sun R., Zhu X., Zhang Q., Wang J., Wu X., Fang X., Zhu Y. // Antiviral Res. 2013. V. 98. P. 44–53. https://doi.org/10.1016/J.ANTIVIRAL.2013.02.003
- Liu Y., Yang L., Wang H., Xiong Y. // Pharmaceuticals. 2022. V. 15. P. 1169. https://doi.org/10.3390/PH15101169
- Verano J., González-Trujano M.E., Déciga-Campos M., Ventura-Martínez R., Pellicer F. // Pharmacol. Biochem. Behav. 2013. V. 110. P. 255–264. https://doi.org/10.1016/J.PBB.2013.07.020
- Colla A.R.S., Oliveira Á., Pazini F.L., Rosa J.M., Manosso L.M., Cunha M.P., Rodrigues A.L.S. // Pharmacol. Biochem. Behav. 2014. V. 124. P. 108– 116. https://doi.org/10.1016/J.PBB.2014.05.015
- Colla A.R.S., Pazini F.L., Lieberknecht V., Camargo A., Rodrigues A.L.S. // Metab. Brain Dis. 2021. V. 36. P. 437–446. https://doi.org/10.1007/S11011-020-00658-4
- Ramos-Hryb A.B., Platt N., Freitas A.E., Heinrich I.A., López M.G., Leal R.B., Kaster M.P., Rodrigues A.L.S. // Neurochem. Res. 2019. V. 44. P. 2843–2855. https://doi.org/10.1007/S11064-019-02906-1
- Nieoczym D., Socała K., Wlaź P. // Neurochem. Res. 2018. V. 43. P. 995–1002. https://doi.org/10.1007/S11064-018-2505-Z
- Colla A.R.S., Rosa J.M., Cunha M.P., Rodrigues A.L.S. // Eur. J. Pharmacol. 2015. V. 758. P. 171–176. https://doi.org/10.1016/J.EJPHAR.2015.03.077
- Kong C.H., Park K., Kim D.Y., Kim J.Y., Kang W.C., Jeon M., Min J.W., Lee W.H., Jung S.Y., Ryu J.H. // Eur. J. Pharmacol. 2023. V. 956. P. 175954. https://doi.org/10.1016/J.EJPHAR.2023.175954
- Sun X., Chen X., Wang S., Zhang J., Wu B., Qin G. // Curr. Pharm. Biotechnol. 2020. V. 22. P. 1953–1959. https://doi.org/10.2174/1389201021666201027155413
- Li C., Ren C., Chen Y., Wang M., Tang J., Zhang Y., Wang Q., Zhang Z. // J. Proteomics. 2023. V. 273. P. 104791. https://doi.org/10.1016/J.JPROT.2022.104791
- Slate J.R., Chriswell B.O., Briggs R.E., McGill J.L. // Front. Vet. Sci. 2021. V. 8. P. 782872. https://doi.org/10.3389/FVETS.2021.782872
- Афанасьева А.И., Сарычев В.А., Смеян Д.А., Толстикова Т.Г., Халикова Д.А., Бражников А.И., Бандеев И.В. // Патент RU2793234C1, 2023.
- Ding Y.J., Sun C.Y., Wen C.C., Chen Y.H. // Toxins. 2015. V. 7. P. 97. https://doi.org/10.3390/TOXINS7010097
- Salomón R., Reyes-López F.E., Tort L., Firmino J.P., Sarasquete C., Ortiz-Delgado J.B., Quintela J.C., Pinilla- Rosas J.M., Vallejos-Vidal E., Gisbert E. // Front. Immunol. 2021. V. 12. P. 670279. https://doi.org/10.3389/fimmu.2021.670279
- Li B.Y., Qin J.C., Shen Y.F., Yang F., Wang T., Ling F., Wang G.X. // Virus Res. 2023. V. 323. P. 198965. https://doi.org/10.1016/J.VIRUSRES.2022.198965
- Tamas V., Manzatu I., Dobos R.E. // Patent RO118629B1, 2003.
- Colceru-Mihul S.G., Ichim M., Manea T., Armatu A., Ocnaru D., Nite S., Panteli M., Ionescu D., Ichim L.I. // Patent RO122436B1, 2009.
- Huang, D., Liang, K., Wei, P. // Patent CN102973861A, 2012.
- Kun H., Ling Z., Yi Z. // Patent CN101732323B, 2010.
- Zhu L., Wang B., Guo T., Zhou X., Tan J., Liu X. // Patent CN103202897A, 2014.
- Jia H., Liu J., Hongbin S., Luyong Z., Pu Z. // Patent CN101817862A, 2010.
- Сорокина И.В., Попов С.А., Толстикова Т.Г., Баев Д.С., Сазонова Л.В., Шпатов А.В., Толстиков Г.А. // Патент RU2436793C1, 2010.
- Caihu L., Congling Y., Kuan Z., Wanqi S., Ping Z., Ying L.I., Shufan Y. // Patent CN102250188A, 2013.
- Li X., Liu H. // Patent CN102920786A, 2013.
- Min Y.K., Ryu S.Y., Kim S.H., Lee S. U. // Worldwide Application KR20090022706A, 2009.
- Ping Z., Yong L., Chengbiao X. // Patent CN102206243A, 2011.
- Li X., Li Y., Lu X., Xiao X. // Patent CN103251944A, 2013.
- Papaccio F., D’arino A., Caputo S., Bellei B. // Antioxidants. 2022. V. 11. P. 1121. https://doi.org/10.3390/ANTIOX11061121
- Neimkhum W., Anuchapreeda S., Lin W.C., Lue S.C., Lee K.H., Chaiyana W. // Antioxidants. 2021. V. 10. P. 1345. https://doi.org/10.3390/ANTIOX10091345
- Di Lorenzo R., Maisto M., Ricci L., Piccolo V., Marzocchi A., Greco G., Tenore G.C., Laneri S. // Int. J. Mol. Sci. 2024. V. 25. P. 1677. https://doi.org/10.3390/IJMS25031677/S1
- Oikawa T. // Patent JP6086707B2, 2017.
- Sugiyama H., Imamura H., Tada A. // Worldwide Application JP2006036715A, 2006.
- Lee G.W., Seo B.G., Lee J.Y., Kim D.K. // Worldwide Application KR20090126048А, 2009.
- Suenobe N., Hitani S. // Worldwide Application JP2007246459A, 2007.
- Trivedi H., Xu T., Worrell C., Panaligan K. // Patent MY148458A, 2013.
- Wang X.H., Zhou S.Y., Qian Z.Z., Zhang H.L., Qiu L.H., Song Z., Zhao J., Wang P., Hao X.S., Wang H.Q. // Expert. Opin. Drug Metab. Toxicol. 2013. V. 9. P. 117–125. https://doi.org/10.1517/17425255.2013.738667
- Zhu Z., Qian Z., Yan Z., Zhao C., Wang H., Ying G. // Int. J. Nanomed. 2013. V. 8. P. 129. https://doi.org/10.2147/IJN.S38271
- Qian Z., Wang X., Song Z., Zhang H., Zhou S., Zhao J., Wang H. // Biomed. Res. Int. 2015. V. 2015. P. 809714. https://doi.org/10.1155/2015/809714
- Ramírez-Rodríguez A.M., González-Ortiz M., Martínez-Abundis E., Acuña Ortega N. // J. Med. Food. 2017. V. 20. P. 882–886. https://doi.org/10.1089/JMF.2017.0003
- Bang H.S., Seo D.Y., Chung Y.M., Oh K.M., Park J.J., Arturo F., Jeong S.H., Kim N., Han J. // Korean J. Physiol. Pharmacol. 2014. V. 18. P. 441–446. https://doi.org/10.4196/KJPP.2014.18.5.441
- Bang H.S., Seo D.Y., Chung Y.M., Kim D.H., Lee S.J., Ryul S., Kwak H.B., Kim T.N., Kim M., Oh K.M., Son Y.J., Kim S., Han J. // Korean J. Physiol. Pharmacol. 2017. V. 21. P. 651–656. https://doi.org/10.4196/KJPP.2017.21.6.651
- Liu J., Yin X., Kou C., Thimmappa R., Hua X., Xue Z. // Plant Commun. 2024. V. 5. P. 100845. https://doi.org/10.1016/J.XPLC.2024.100845
- Alam M., Ali S., Ahmed S., Elasbali A.M., Adnan M., Islam A., Hassan M.I., Yadav D.K. // Int. J. Mol. Sci. 2021. V. 22. P. 12162. https://doi.org/10.3390/IJMS222212162
- Hu X., Liu G., Li Y., Wang X., Liu S. // J. Am. Chem. Soc. 2015. V. 137. P. 362–368. https://doi.org/10.1021/ja5105848
- Alfei S., Schito A.M., Zuccari G. // Nanomaterials. 2021. V. 11. P. 2196. https://doi.org/10.3390/nano11092196
- Zhang N., Liu S., Shi S., Chen Y., Xu F., Wei X., Xu Y. // J. Control Release. 2020. V. 320. P. 168–178. https://doi.org/10.1016/j.jconrel.2020.01.015
- Khwaza V., Oyedeji O.O., Aderibigbe B.A. // Int. J. Mol. Sci. 2020. V. 21. P. 5920. https://doi.org/10.3390/IJMS21165920
- Dai Y., Sun L., Tan Y., Xu W., Liu S., Zhou J., Hu Y., Lin J., Yao X., Mi P., Zheng X. // Chem. Biol. Drug Des. 2023. V. 102. P. 1643–1657. https://doi.org/10.1111/CBDD.14347
- Griffiths D.W., Robertson G.W., Shepherd T., Birch A.N.E., Gordon S.C., Woodford J.A.T. // Phytochemistry. 2000. V. 55. P. 111–116. https://doi.org/10.1016/S0031-9422(00)00250-8
- Klavins L., Klavins M. // Foods. 2020. V. 9. P. 587. https://doi.org/10.3390/FOODS9050587
- Szakiel A., Nizyński B., Pa czkowski C. // Nat. Prod. Res. 2013. V. 27. P. 1404–1407. https://doi.org/10.1080/14786419.2012.742083
- Chu W., Gao H., Cao S., Fang X., Chen H., Xiao S. // Food Chem. 2017. V. 219. P. 436–442. https://doi.org/10.1016/J.FOODCHEM.2016.09.186
- Huang H., Lian Q., Wang L., Shan Y., Li F., Chang S.K., Jiang Y. // Plant Physiol. Biochem. 2020. V. 155. P. 589–595. https://doi.org/10.1016/J.PLAPHY.2020.08.023
- Simões R., Rodrigues A., Ferreira-Dias S., Miranda I., Pereira H. // Plants. 2020. V. 9. P. 1165. https://doi.org/10.3390/PLANTS9091165
- Becker R., Pączkowski C., Szakiel A. // Acta Societatis Botanicorum Poloniae. 2017. V. 86. Р. 3539. https://doi.org/10.5586/asbp.3539
- Huang H., Burghardt M., Schuster A.C., Leide J., Lara I., Riederer M. // J. Agric. Food Chem. 2017. V. 65. P. 8790–8797. https://doi.org/10.1021/acs.jafc.7b03049
- Belge B., Llovera M., Comabella E., Graell J., Lara I. // J. Agric. Food Chem. 2014. V. 62. P. 3488–3495. https://doi.org/10.1021/jf5003528
- Lino L.O., Quilot-Turion B., Dufour C., Corre M.N., Lessire R., Génard M., Poëssel J.L. // J. Exp. Bot. 2020. V. 71. P. 5521. https://doi.org/10.1093/jxb/eraa284
- Huang H., Jiang Y. // Agriculture. 2019. V. 9. P. 250. https://doi.org/10.3390/agriculture9120250
- Zhu S., Huang S., Lin X., Wan X., Zhang Q., Peng J., Luo D., Zhang Y., Dong X. // Foods. 2023. V. 12. P. 1717. https://doi.org/10.3390/FOODS12081717
- Tsubaki S., Sugimura K., Teramoto Y., Yonemori K., Azuma J. // PLoS One. 2013. V. 8. P. e75275. https://doi.org/10.1371/journal.pone.0075275
- Peschel S., Franke R., Schreiber L., Knoche M. // Phytochemistry. 2007. V. 68. P. 1017–1025. https://doi.org/10.1016/j.phytochem.2007.01.008
- Belge B., Llovera M., Comabella E., Gatius F., Guillén P., Graell J., Lara I. // J. Agric. Food Chem. 2014. V. 62. P. 8722–8729. https://doi.org/10.1021/JF502650T
- Trivedi P., Nguyen N., Klavins L., Kviesis J., Heinonen E., Remes J., Jokipii-Lukkari S., Klavins M., Karppinen K., Jaakola L., Häggman H. // Food Chem. 2021. V. 354. P. 129517. https://doi.org/10.1016/j.foodchem.2021.129517
- Szakiel A., Pa czkowski C., Huttunen S. // J. Agric. Food Chem. 2012. V. 60. P. 11839–11849. https://doi.org/10.1021/JF3046895
- Buschhaus C., Herz H., Jetter R. // Ann. Bot. 2007. V. 100. P. 1557–1564. https://doi.org/10.1093/aob/mcm255
- Pereira S.I., Freire C.S.R., Neto C.P., Silvestre A.J.D., Silva A.M.S. // Phytochem. Anal. 2005. V. 16. P. 364– 369. https://doi.org/10.1002/pca.859
- Wojdyło A., Nowicka P., Turkiewicz I.P., Tkacz K., Hernandez F. // Sci. Rep. 2021. V. 11. P. 20253. https://doi.org/10.1038/S41598-021-99293-X
- Silva M.G., Vieira Í.G., Mendes F.N., Albuquerque I.L., Dos Santos R.N., Silva F.O., Morais S.M. // Molecules. 2008. V. 13. P. 2482–2487. https://doi.org/10.3390/molecules13102482
- Caligiani A., Malavasi G., Palla G., Marseglia A., Tognolini M., Bruni R. // Food Chem. 2013. V. 136. P. 735– 741. https://doi.org/10.1016/j.foodchem.2012.08.011
- Sharifiyan F., Mirjalili S.A., Fazilati M., Poorazizi E., Habibollahi S. // BMC Chem. 2019. V. 13. P. 80. https://doi.org/10.1186/S13065-019-0598-3
- Sun L., Tao S., Zhang S. // Molecules. 2019. V. 24. P. 159. https://doi.org/10.3390/molecules24010159
- Li X., Wang T., Zhou B., Gao W., Cao J., Huang L. // Food Chem. 2014. V. 152. P. 531–538. https://doi.org/10.1016/j.foodchem.2013.12.010
- Rao G.V., Mukhopadhyay T., Annamalai T., Radhakrishnan N., Sahoo M.R. // Pharmacogn. Res. 2011. V. 3. P. 143–145. https://doi.org/10.4103/0974-8490.81964
- Šedbarė R., Pašakinskienė I., Janulis V. // Plants. 2023. V. 12. P. 202. https://doi.org/10.3390/PLANTS12010202
- Oszmiański J., Lachowicz S., Gorzelany J., Matłok N. // Eur. Food Res. Technol. 2018. V. 244. P. 705–719. https://doi.org/10.1007/S00217-017-2994-Z
- Sedbare R., Raudone L., Zvikas V., Viskelis J., Liaudanskas M., Janulis V. // Molecules. 2022. V. 27. P. 4403. https://doi.org/10.3390/MOLECULES27144403
- Amico V., Barresi V., Condorelli D., Spatafora C., Tringali C. // J. Agric. Food Chem. 2006. V. 54. P. 810– 814. https://doi.org/10.1021/JF052812Q
- Jäger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. // Molecules. 2009. V. 14. P. 2016–2031. https://doi.org/10.3390/MOLECULES14062016
- Borrás-Linares I., Pérez-Sánchez A., Lozano-Sánchez J., Barrajón-Catalán E., Arráez-Román D., Cifuentes A., Micol V., Carretero A.S. // Food Chem. Toxicol. 2015. V. 80. P. 215–222. https://doi.org/10.1016/J.FCT.2015.03.013
- Li P., Liu A., Li Y., Yuan B., Xiao W., Liu Z., Zhang S., Lin H. // Molecules. 2019. V. 24. P. 323. https://doi.org/10.3390/MOLECULES24020323
- Kontogianni V.G., Tomic G., Nikolic I., Nerantzaki A.A., Sayyad N., Stosic-Grujicic S., Stojanovic I., Gerothanassis I.P., Tzakos A.G. // Food Chem. 2013. V. 136. P. 120–129. https://doi.org/10.1016/j.foodchem.2012.07.091
- Wolbiś M., Olszewska M., Wesołowski W.J. // Acta Pol. Pharm. 2001. V. 58. P. 459–462.
- Ibarra-Alvarado C., Rojas A., Luna F., Rojas J.I., Rivero-Cruz B., Rivero-Cruz J.F. // Rev. Latinoam. Quím. 2009. V. 37. P. 164–173.
- Razboršek M.I., Vončina D.B., Doleček V., Vončina E. // Chromatographia. 2008. V. 67. P. 433–440. https://doi.org/10.1365/S10337-008-0533-6
- Verma S.C., Jain C.L., Kumari A., Padhi M.M., Devalla R.B. // J. Sep. Sci. 2013. V. 36. P. 1255–1262. https://doi.org/10.1002/JSSC.201200950
- da Silva E.F., de Vargas A.S., Willig J.B., de Oliveira C.B., Zimmer A.R., Pilger D.A., Buffon A., Gnoatto S.C.B. // Chem. Biol. Interact. 2021. V. 344. P. 109535. https://doi.org/10.1016/j.cbi.2021.109535
- Spivak A.Y., Khalitova R.R., Nedopekina D.A., Gubaidullin R.R. // Steroids. 2020. V. 154. P. 108530. https://doi.org/10.1016/j.steroids.2019.108530
- Wu P.P., Zhang B.J., Cui X.P., Yang Y., Jiang Z.Y., Zhou Z.H., Zhong Y.Y., Mai Y.Y., Ouyang Z., Chen H.S., Zheng J., Zhao S.Q., Zhang K. // Sci. Rep. 2017. V. 7. P. 45578. https://doi.org/10.1038/srep45578
- Wu P., He P., Zhao S., Huang T., Lu Y., Zhang K. // Molecules. 2014. V. 19. P. 12559. https://doi.org/10.3390/molecules190812559
- Chen C., Sun R., Sun Y., Chen X., Li F., Wen X., Yuan H., Chen D. // Bioorg. Med. Chem. Lett. 2020. V. 30. P. 126824. https://doi.org/10.1016/j.bmcl.2019.126824
- Попов С.А., Сорокина И.В., Толстикова Т.Г., Баев Д.С., Созонова Л.В., Шеремет О.П., Толстиков Г.А. // Патент RU2430105C1, 2010.
- Zhang T.Y., Li C.S., Cao L.T., Bai X.Q., Zhao D.H., Sun S.M. // Mol. Divers. 2022. V. 26. P. 1129–1139. https://doi.org/10.1007/S11030-021-10236-0
- Gou W., Luo N., Wei H., Wu H., Yu X., Duan Y., Bi C., Ning H., Hou W., Li Y. // Pharm. Biol. 2020. V. 58. P. 707–715. https://doi.org/10.1080/13880209.2020.1794013
- Wu P., Zheng J., Huang T., Li D., Hu Q., Cheng A., Jiang Z., Jiao L., Zhao S., Zhang K. // PLoS One. 2015. V. 10. P. e0138767. https://doi.org/10.1371/journal.pone.0138767
- Huang T., Wu P., Cheng A., Qin J., Zhang K., Zhao S. // RSC Adv. 2015. V. 5. P. 44234–44246. https://doi.org/10.1039/c5ra05450h
- Сорокина И.В., Попов С.А., Толстикова Т.Г., Баев Д.С., Сазонова Л.В., Козлова Л.П., Толстиков Г.А. // Патент RU2430106C1, 2010.
- Li J. // Patent CN103936814A, 2014.
- Jin X.Y., Chen H., Li D.D., Li A.L., Wang W.Y., Gu W. // J. Enzyme Inhib. Med. Chem. 2019. V. 34. P. 955–972. https://doi.org/10.1080/14756366.2019.1605364
Қосымша файлдар
