Gene Therapy Drugs Based on Synthetic Oligonucleotides
- 作者: Kozlov I.B.1, Gerasimov O.A.1, Domasheva O.Y.1, Bushina L.G.1, Safonova L.A.1, Makarov V.V.1, Yudin V.S.1
-
隶属关系:
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency
- 期: 卷 51, 编号 2 (2025)
- 页面: 189-206
- 栏目: Articles
- URL: https://journals.rcsi.science/0132-3423/article/view/291755
- DOI: https://doi.org/10.31857/S0132342325020022
- EDN: https://elibrary.ru/LDAHTD
- ID: 291755
如何引用文章
详细
The development of medicines, the structure of which resembles or is completely identical to the natural components of a living organism, is currently a promising and of great interest among scientists. The invention of a synthetic analog of nucleic acids was carried out due to the active development of oligonucleotide synthesis in the 1980s and subsequent research in the field of chemical modification of the nucleotide, which made it possible to change the properties of nucleic acids and increase their stability. The accumulated world experience has made it possible to create medicines based on synthetic oligonucleotides aimed at the treatment of rare genetic diseases. Since 1998, a relatively small number of drugs have been approved by regulatory authorities in different countries for use in clinical practice. Most of them are aimed at the treatment of orphan diseases. To date, there are 20 therapeutic drugs based on synthetic oligonucleotides that have been approved by medical regulatory authorities for use in clinical practice. Of this list, only one drug was developed in Russia (MIR 19®). This review describes all drugs based on synthetic oligonucleotides approved for 2024, and also examines and systematizes current knowledge about promising types of therapeutic oligonucleotides with different mechanisms of interaction with the target.
全文:

作者简介
I. Kozlov
Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency
编辑信件的主要联系方式.
Email: IKozlov@cspfmba.ru
俄罗斯联邦, ul. Pogodinskaya 10/1, Moscow, 119121
O. Gerasimov
Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency
Email: IKozlov@cspfmba.ru
俄罗斯联邦, ul. Pogodinskaya 10/1, Moscow, 119121
O. Domasheva
Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency
Email: IKozlov@cspfmba.ru
俄罗斯联邦, ul. Pogodinskaya 10/1, Moscow, 119121
L. Bushina
Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency
Email: IKozlov@cspfmba.ru
俄罗斯联邦, ul. Pogodinskaya 10/1, Moscow, 119121
L. Safonova
Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency
Email: IKozlov@cspfmba.ru
俄罗斯联邦, ul. Pogodinskaya 10/1, Moscow, 119121
V. Makarov
Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency
Email: IKozlov@cspfmba.ru
俄罗斯联邦, ul. Pogodinskaya 10/1, Moscow, 119121
V. Yudin
Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency
Email: IKozlov@cspfmba.ru
俄罗斯联邦, ul. Pogodinskaya 10/1, Moscow, 119121
参考
- Watson J.D., Crick F.H.C. // Nature. 1953. V. 171. P. 737–738. https://doi.org/10.1038/171737a0
- Michelson A., Todd A. // J. Chem. Soc. Res. 1955. P. 2632–2638. https://doi.org/10.1039/jr9550002632
- Khorana H.G., Razzell W.E., Gilham P.T., Tener G.M., Pol E.H. // J. Am. Chem. Soc. 1957. V. 79. P. 1002– 1003. https://doi.org/10.1021/ja01561a065
- Letsinger R.L., Ogilvie K.K. // J. Am. Chem. Soc. 1969. V. 91. P. 3350–3355. https://doi.org/10.1021/ja01040a042
- Letsinger R.L., Lunsford W.B. // J. Am. Chem. Soc. 1976. V. 98. P. 3655–3661. https://doi.org/10.1021/ja00428a045
- Beaucage S.L., Caruthers M.H. // Tetrahedron Lett. 1981. V. 22. P. 1859–1862. https://doi.org/10.1016/s0040-4039(01)90461-7
- McBride L.J., Caruthers M.H. // Tetrahedron Lett. 1983. V. 24. P. 245–248. https://doi.org/10.1016/s0040-4039(00)81376-3
- Hoover D.M., Lubkowski J. // Nucleic Acids Res. 2002. V. 30. P. e43. https://doi.org/10.1093/nar/30.10.e43
- Smith H.O., Hutchison C.A., Pfannkoch C., Venter J.C. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 15440–15445. https://doi.org/10.1073/pnas.2237126100
- Erlich H.A., Bugawan T.L. // In: PCR Technology / Ed. Erlich H.A. Palgrave Macmillan, London, 1989. P. 193–208. https://doi.org/10.1007/978-1-349-20235-5_16
- Schütze T., Wilhelm B., Greiner N., Braun H., Peter F., Mörl M., Erdmann V.A., Lehrach H., Konthur Z., Menger M. // Plos One. 2011. V. 6. P. e29604. https://doi.org/10.1371/journal.pone.0029604
- Grada A., Weinbrecht K. // J. Invest. Dermatol. 2013. V. 133. P. 1–4. https://doi.org/10.1038/jid.2013.248
- Gnirke A., Melnikov A., Maguire J., Rogov P., LeProust E.M., Brockman W., Fennell T., Giannoukos G., Fisher S., Russ C. // Nat. Biotechnol. 2009. V. 27. P. 182–189. https://doi.org/10.1038/nbt.1523
- Kelley M.L., Strezoska Ž., He K., Vermeulen A., Smith A. van B. // J. Biotechnol. 2016. V. 233. P. 74–83. https://doi.org/10.1016/j.jbiotec.2016.06.011
- Palumbo C.M., Gutierrez-Bujari J.M., O’Geen H., Segal D.J., Beal P.A. // Chembiochem. 2020. V. 21. P. 1633–1640. https://doi.org/10.1002/cbic.201900736
- Lundin K.E., Gissberg O., Smith C.I.E. // Hum. Gene Ther. 2015. V. 26. P. 475–485. https://doi.org/10.1089/hum.2015.070
- Shen X., Corey D.R. // Nucleic Acids Res. 2017. V. 46. P. 1584–1600. https://doi.org/10.1093/nar/gkx1239
- Corey D.R. // Nat. Neurosci. 2017. V. 20. P. 497–499. https://doi.org/10.1038/nn.4508
- Kijas J.M., Fowler J.C., Garbett C.A., Thomas M.R. // Biotechniques. 1994. V. 16. P. 656–660, 662.
- Niemeyer C.M., Sano T., Smith C.L., Cantor C.R. // Nucleic Acids Res. 1994. V. 22. P. 5530–5539. https://doi.org/10.1093/nar/22.25.5530
- Didenko V.V. // Biotechniques. 2001. V. 31. P. 1106– 1121. https://doi.org/10.2144/01315rv02
- Benizri S. Gissot A., Martin A., Vialet B., Grinstaff M.W., Barthélémy P. // Bioconjug. Chem. 2019. V. 30. P. 366–383. https://doi.org/10.1021/acs.bioconjchem.8b00761
- Provenzano M., Mocellin S. // Adv. Exp. Med. Biol. 2007. V. 593. P. 66–73. https://doi.org/10.1007/978-0-387-39978-2_7
- Brannagan T.H., Berk J.L., Gillmore J.D., Maurer M.S., Waddington-Cruz M., Fontana M., Masri A., Obici L., Brambatti M., Baker B.F. // J. Peripher. Nerv. Syst. 2022. V. 27. P. 228–237. https://doi.org/10.1111/jns.12519
- Manoharan M., Tivel K.L., Andrade L.K., Mohan V., Condon T.P., Bennett C.F., and Cook P.D. // Nucleosides Nucleotides. 1995. V. 14. P. 969–973. https://doi.org/10.1080/15257779508012513
- Nishina T., Numata J., Nishina K., Yoshida-Tanaka K., Nitta K., Piao W., Iwata R., Ito S., Kuwahara H., Wada T. // Mol. Ther. Nucleic Acids. 2015. V. 4. P. e220. https://doi.org/10.1038/mtna.2014.72
- Otero-Carrasco B., Romero-Brufau S., ÁlvarezPérez A., Ayuso-Muñoz A., Prieto-Santamaría L., Hernández J.P.C.-V., Rodríguez-González A. // bioRxiv. 2023. https://doi.org/10.1101/2023.05.03.539318
- Melnikova I. // Nat. Rev. Drug Discov. 2012. V. 11. P. 267–268. https://doi.org/10.1038/nrd3654
- Перечень редких (орфанных) заболеваний // Министерство здравоохранения Российской Федерации. 2024. https://minzdrav.gov.ru/documents/9818-perechen-redkih-orfannyh-zabolevaniy
- Li Z., Rana T.M. // Nat. Rev. Drug Discov. 2014. V. 13. P. 622–638. https://doi.org/10.1038/nrd4359
- Akimoto S., Suzuki J., Aoyama N., Ikeuchi R., Watanabe H., Tsujimoto H., Wakayama K., Kumagai H., Ikeda Y., Akazawa H. // Int. Hear. J. 2018. V. 59. P. 1134–1141. https://doi.org/10.1536/ihj.17-632
- Abaturov A.Ye., Volosovets A.P., Yulish Ye.I. // Здоровье ребенка. 2014. № 6(57). С. 131–136. https://doi.org/10.22141/2224-0551.6.57.2014.75743
- Nakamura H., Oda Y., Iwai S., Inoue H., Ohtsuka E., Kanaya S., Kimura S., Katsuda C., Katayanagi K., Morikawa K. // Proc. Natl. Acad. Sci. USA. 1991. V. 88. P. 11535–11539. https://doi.org/10.1073/pnas.88.24.11535
- Vickers T.A., Crooke S.T. // Nucleic Acids Res. 2015. V. 43. P. 8955–8963. https://doi.org/10.1093/nar/gkv920
- Roehr B. // J. Int. Assoc. Physicians AIDS Care. 1998. V. 4. P. 14–16.
- Hoy S.M. // Drugs. 2017. V. 77. P. 473–479. https://doi.org/10.1007/s40265-017-0711-7
- Ottesen E.W. // Transl. Neurosci. 2017. V. 8. P. 1–6. https://doi.org/10.1515/tnsci-2017-0001
- The Nobel Prize in Physiology or Medicine 2024. https://www.nobelprize.org/prizes/medicine/2024/advanced-information/
- Ho P.T.B., Clark I.M., Le L.T.T. // Int. J. Mol. Sci. 2022. V. 23. P. 7167. https://doi.org/10.3390/ijms23137167
- Krützfeldt J., Rajewsky N., Braich R., Rajeev K.G., Tuschl T., Manoharan M., Stoffel M. // Nature. 2005. V. 438. P. 685–689. https://doi.org/10.1038/nature04303
- Gallant-Behm C.L., Piper J., Lynch J.M., Seto A.G., Hong S.J., Mustoe T.A., Maari C., Pestano L.A., Dalby C.M., Jackson A.L. // J. Investig. Dermatol. 2019. V. 139. P. 1073–1081. https://doi.org/10.1016/j.jid.2018.11.007
- Woolf T.M., Chase J.M., Stinchcomb D.T. // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 8298–8302. https://doi.org/10.1073/pnas.92.18.8298
- Qu L., Yi Z., Zhu S., Wang C., Cao Z., Zhou Z., Yuan P., Yu Y., Tian F., Liu Z. // Nat. Biotechnol. 2019. V. 37. P. 1059–1069. https://doi.org/10.1038/s41587-019-0178-z
- Merkle T., Merz S., Reautschnig P., Blaha A., Li Q., Vogel P., Wettengel J., Li J.B., Stafforst T. // Nat. Biotechnol. 2019. V. 37. P. 133–138. https://doi.org/10.1038/s41587-019-0013-6
- Doherty E.E., Beal P.A. // Mol. Ther. 2022. V. 30. P. 2117–2119. https://doi.org/10.1016/j.ymthe.2022.04.005
- Aquino-Jarquin G. // Mol. Ther. Nucleic Acids. 2020. V. 19. P. 1065–1072. https://doi.org/10.1016/j.omtn.2019.12.042
- Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. // Nature. 1998. V. 391. P. 806– 811. https://doi.org/10.1038/35888
- Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. // Nature. 2001. V. 411. P. 494–498. https://doi.org/10.1038/35078107
- Leuschner P.J.F., Ameres S.L., Kueng S., Martinez J. // EMBO Rep. 2006. V. 7. P. 314–320. https://doi.org/10.1038/sj.embor.7400637
- Martinez J., Patkaniowska A., Urlaub H., Lührmann R., Tuschl T. // Cell. 2002. V. 110. P. 563–574. https://doi.org/10.1016/s0092-8674(02)00908-x
- Iwakawa H., Tomari Y. // Mol. Cell. 2022. V. 82. P. 30–43. https://doi.org/10.1016/j.molcel.2021.11.026
- Meister G. // Nat. Rev. Genet. 2013. V. 14. P. 447–459. https://doi.org/10.1038/nrg3462
- Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. // Mol. Cell. 2004. V. 15. P. 185–197. https://doi.org/10.1016/j.molcel.2004.07.007
- Sheu-Gruttadauria J. Pawlica P., Klum S.M., Wang S., Yario T.A., Oakdale N.T.S., Steitz J.A., MacRae I.J. // Mol. Cell. 2019. V. 75. P. 1243–1255.e7. https://doi.org/10.1016/j.molcel.2019.06.019
- Raja M.A.G., Katas H., Amjad M.W. // Asian J. Pharm. Sci. 2019. V. 14. P. 497–510. https://doi.org/10.1016/j.ajps.2018.12.005
- Lee S.H. Kang Y.Y., Jang H.-E., Mok H. // Adv. Drug Deliv. Rev. 2016. V. 104. P. 78–92. https://doi.org/10.1016/j.addr.2015.10.009
- Subhan M.A., Torchilin V. // Nanomed. Nanotechnol. Biol. Med. 2020. V. 29. P. 102239. https://doi.org/10.1016/j.nano.2020.102239
- Hoy S.M. // Drugs. 2018. V. 78. P. 1625–1631. https://doi.org/10.1007/s40265-018-0983-6
- Scott L.J. // Drugs. 2020. V. 80. P. 335–339. https://doi.org/10.1007/s40265-020-01269-0
- Khaitov M., Nikonova A., Shilovskiy I., Kozhikhova K., Kofiadi I., Vishnyakova L., Nikolskii A., Gattinger P., Kovchina V., Barvinskaia E. // Allergy. 2021. V. 76. P. 2840–2854. https://doi.org/10.1111/all.14850
- Khaitov M., Nikonova A., Kofiadi I., Shilovskiy I., Smirnov V., Elisytina O., Maerle A., Shatilov A., Shatilova A., Andreev S. // Allergy. 2023. V. 78. P. 1639–1653. https://doi.org/10.1111/all.15663
- Long-Cheng Li, Okino S.T., Zhao H., Pookot D., Place R.F., Urakami S., Enokida H., Dahiya R. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 17337– 17342. https://doi.org/10.1073/pnas.0607015103
- Sarker D., Plummer R., Meyer T., Sodergren M.H., Basu B., Chee C.E., Huang K.-W., Palmer D.H., Ma Y.T., Evans T.R.J. // Clin. Cancer Res. 2020. V. 26. P. 3936–3946. https://doi.org/10.1158/1078-0432.ccr-20-0414
- Hanagata N. // Int. J. Nanomed. 2017. V. 12. P. 515– 531. https://doi.org/10.2147/ijn.s114477
- Hanagata N., Li X., Min-Hua Chen, Li J., Hattor S. // Int. J. Nanomed. 2017. V. 13. P. 43–62. https://doi.org/10.2147/ijn.s152141
- Yu W., Sun J., Liu F., Yu S., Xu Z., Wang F., Liu X. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 17167– 17176. https://doi.org/10.1021/acsami.9b21075
- Urban-Wojciuk Z., Khan M.M., Oyler B.L., Fåhraeus R., Marek-Trzonkowska N., Nita-Lazar A., Hupp T.R., Goodlett D.R. // Front. Immunol. 2019. V. 10. P. 2388. https://doi.org/10.3389/fimmu.2019.02388
- Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K. // Nature. 2000. V. 408. P. 740–745. https://doi.org/10.1038/35047123
- Vollmer J., Krieg A.M. // Adv. Drug Deliv. Rev. 2009. V. 61. P. 195–204. https://doi.org/10.1016/j.addr.2008.12.008
- Kang T.H. Mao C.-P., Kim Y.S., Kim T.W., Yang A., Lam B., Tseng S.-H., Farmer E., Park Y.-M., Hung C.-F. // J. Immunother. Cancer. 2019. V. 7. P. 260. https://doi.org/10.1186/s40425-019-0738-2
- Hager S., Fittler F.J., Wagner E., Bros M. // Cells. 2020. V. 9. P. 2061. https://doi.org/10.3390/cells9092061
- Klinman D.M. // Nat. Rev. Immunol. 2004. V. 4. P. 249–259. https://doi.org/10.1038/nri1329
- Shirota H., Klinman D.M. // Expert Rev. Vaccines. 2014. V. 13. P. 299–312. https://doi.org/10.1586/14760584.2014.863715
- Krug A., Rothenfusser S., Hornung V., Jahrsdörfer B., Blackwell S., Ballas Z.K., Endres S., Krieg A.M., Hartmann G. // Eur. J. Immunol. 2001. V. 31. P. 2154– 2163. https://doi.org/10.1002/1521-4141(200107)31:7<2154: :aid-immu2154>3.0.co;2-u
- Krieg A.M., Yi A.-K., Matson S., Waldschmidt T.J., Bishop G.A., Teasdale R., Koretzky G.A., Klinman D.M. // Nature. 1995. V. 374. P. 546–549. https://doi.org/10.1038/374546a0
- Nehete P.N., Williams L.E., Chitta S., Nehete B.P., Patel A.G., Ramani M.D., Wisniewski T., Scholtzova H. // Front. Aging Neurosci. 2020. V. 12. P. 36. https://doi.org/10.3389/fnagi.2020.00036
- Bode C., Zhao G., Steinhagen F., Kinjo T., Klinman D.M. // Expert Rev. Vaccines. 2011. V. 10. P. 499–511. https://doi.org/10.1586/erv.10.174
- Sun H., Zhu X., Lu P.Y., Rosato R.R., Tan W., Zu Y. // Mol. Ther. Nucleic Acids. 2014. V. 3. P. e182. https://doi.org/10.1038/mtna.2014.32
- Nissim A., Chernajovsky Y. // Handb. Exp. Pharmacol. 2008. V. 181. P. 3–18. https://doi.org/10.1007/978-3-540-73259-4_1
- Tuerk C., Gold L. // Science. 1990. V. 249. P. 505–510. https://doi.org/10.1126/science.2200121
- Ellington A.D., Szostak J.W. // Nature. 1990. V. 346. P. 818–822. https://doi.org/10.1038/346818a0
- Sheng L., Rigo F., Bennett C.F., Krainer A.R., Hua Y. // Nucleic Acids Res. 2020. V. 48. P. 2853–2865. https://doi.org/10.1093/nar/gkaa126
- Michaud M., Jourdan E., Villet A., Ravel A., Grosset C., Peyrin E. // J. Am. Chem. Soc. 2003. V. 125. P. 8672– 8679. https://doi.org/10.1021/ja034483t
- Gao F. Yin J., Chen Y., Guo C., Hu H., Su J. // Front. Bioeng. Biotechnol. 2022. V. 10. P. 972933. https://doi.org/10.3389/fbioe.2022.972933
- Chen X., He X., Gao R., Lan X., Zhu L., Chen K., Hu Y., Huang K., Xu W. // ACS Nano. 2022. V. 16. P. 1036–1050. https://doi.org/10.1021/acsnano.1c08690
- Tan K.X., Jeevanandam J., Pan S., Yon L.S., Danquah M.K. // J. Drug Deliv. Sci. Technol. 2020. V. 57. P. 101764. https://doi.org/10.1016/j.jddst.2020.101764
- Mauro V.D., Lauta F.C., Modica J., Appleton S.L., Franciscis V.D., Catalucci D. // JACC Basic Transl. Sci. 2023. V. 9. P. 260–277. https://doi.org/10.1016/j.jacbts.2023.06.013
- Liu X., Hu J., Ning Y., Xu H., Cai H., Yang A., Shi Z., Li Z. // Cell Transplant. 2023. V. 32. P. 1–11. https://doi.org/10.1177/09636897221144949
- Troisi R., Riccardi C., Carvasal K.P., de Smietana M., Morvan F., Vecchio P.D., Montesarchio D., Sica F. // Mol. Ther. Nucleic Acids. 2022. V. 30. P. 585–594. https://doi.org/10.1016/j.omtn.2022.11.007
- Chen X.-F., Zhao X., Yang Z. // J. Med. Chem. 2021. V. 64. P. 17601–17626. https://doi.org/10.1021/acs.jmedchem.1c01567
- Morrow P.K., Murthy R.K., Ensor J.D., Gordon G.S., Margolin K.A., Elias A.D., Urba W.J., Weng D.E., Rugo H.S., Hortobagyi G.N. // Cancer. 2012. V. 118. P. 4098–4104. https://doi.org/10.1002/cncr.26730
- Silverman S.K. // Org. Biomol. Chem. 2004. V. 2. P. 2701–2706. https://doi.org/10.1039/b411910j
- Breaker R.R., Joyce G.F. // Chem. Biol. 1994. V. 1. P. 223–229. https://doi.org/10.1016/1074-5521(94)90014-0
- Huo W., Li X., Wang B., Zhang H., Zhang J., Yang X., Jin Y. // Biophys. Rep. 2020. V. 6. P. 256–265. https://doi.org/10.1007/s41048-020-00123-w
- Santoro S.W., Joyce G.F. // Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 4262–4266. https://doi.org/10.1073/pnas.94.9.4262
- McConnell E.M., Cozma I., Mou Q., Brennan J.D., Lu Y., Li Y. // Chem. Soc. Rev. 2021. V. 50. P. 8954– 8994. https://doi.org/10.1039/d1cs00240f
- Ma L., Liu J. // iScience. 2020. V. 23. P. 100815. https://doi.org/10.1016/j.isci.2019.100815
- Fredj Z., Singh B., Bahri M., Qin P., Sawan M. // Chemosensors. 2023. V. 11. P. 388. https://doi.org/10.3390/chemosensors11070388
- Nedorezova D.D., Dubovichenko M.V., Belyaeva E.P., Grigorieva E.D., Peresadina A.V., Kolpashchikov D.M. // Theranostics. 2022. V. 12. P. 7132–7157. https://doi.org/10.7150/thno.77830
- Nedorezova D.D., Dubovichenko M.V., Kalnin A.J., Nour M.A.Y., Eldeeb A.A., Ashmarova A.I., Kurbanov G.F., Kolpashchikov D.M. // ChemBioChem. 2024. V. 25. P. e202300637. https://doi.org/10.1002/cbic.202300637
- Scharner J., Ma W.K., Zhang Q., Lin K.-T., Rigo F., Bennett C.F., Krainer A.R. // Nucleic Acids Res. 2019. V. 48. P. 802–816. https://doi.org/10.1093/nar/gkz1132
- Yoshida T., Naito Y., Yasuhara H., Sasaki K., Kawaji H., Kawai J., Naito M., Okuda H., Obika S., Inoue T. // Genes Cells. 2019. V. 24. P. 827–835. https://doi.org/10.1111/gtc.12730
- Michel S., Schirduan K., Shen Y., Klar R., Tost J., Jaschinski F. // Mol. Diagn. Ther. 2021. V. 25. P. 77–85. https://doi.org/10.1007/s40291-020-00504-4
- Thakur S., Sinhari A., Jain P., Jadhav H.R. // Front. Pharmacol. 2022. V. 13. P. 1006304. https://doi.org/10.3389/fphar.2022.1006304
- Zhang X. // Front. Mol. Neurosci. 2024. V. 17. P. 1412964. https://doi.org/10.3389/fnmol.2024.1412964
- Roehr B. // AIDS Treat. N. 1998. V. 7. P. 14–16.
- Fine S.L., Martin D.F., Kirkpatrick P. // Nat. Rev. Drug Discov. 2005. V. 4. P. 187–188. https://doi.org/10.1038/nrd1677
- Hair P., Cameron F., McKeage K. // Drugs. 2013. V. 73. P. 487–493. https://doi.org/10.1007/s40265-013-0042-2
- Syed Y.Y. // Drugs. 2016. V. 76. P. 1699–1704. https://doi.org/10.1007/s40265-016-0657-1
- Splawn L.M., Bailey C.A., Medina J.P., Cho J.C. // Drugs Today. 2018. V. 54. P. 399–405. https://doi.org/10.1358/dot.2018.54.7.2833984
- Keam S.J. // Drugs. 2018. V. 78. P. 1371–1376. https://doi.org/10.1007/s40265-018-0968-5
- Paik J., Duggan S. // Drugs. 2019. V. 79. P. 1349–1354. https://doi.org/10.1007/s40265-019-01168-z
- Heo Y.-A. // Drugs. 2020. V. 80. P. 329–333. https://doi.org/10.1007/s40265-020-01267-2
- Dhillon S. // Drugs. 2020. V. 80. P. 1027–1031. https://doi.org/10.1007/s40265-020-01339-3
- Scott L.J., Keam S.J. // Drugs. 2021. V. 81. P. 277–282. https://doi.org/10.1007/s40265-020-01463-0
- Lamb Y.N. // Drugs. 2021. V. 81. P. 389–395. https://doi.org/10.1007/s40265-021-01473-6
- Shirley M. // Drugs. 2021. V. 81. P. 875–879. https://doi.org/10.1007/s40265-021-01512-2
- Keam S.J. // Drugs. 2022. V. 82. P. 1419–1425. https://doi.org/10.1007/s40265-022-01765-5
- Blair H.A. // Drugs. 2023. V. 83. P. 1039–1043. https://doi.org/10.1007/s40265-023-01904-6
补充文件
