Synthesis and Evaluation of the Antiviral Activity of 5-Halogen-2'-Azido-Substituted Derivatives of Cytidine and N-Hydroxycytidine on a Panel of RNA Viruses, Including SARS-CoV-2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Coronavirus disease 2019 (COVID-19) is a new global pandemic with high morbidity and mortality caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). N-Hydroxycytidine derivatives show promise for combating viral diseases, and in particular, molnupiravir has recently been approved for emergency prophylaxis in the early stages after infection with SARS-CoV-2. Here, a scheme for the synthesis of 5‑halo-2'-azido-substituted derivatives of cytidine and N-hydroxycytidine is proposed. The synthesized compounds were tested on a panel of six RNA viruses, including SARS-CoV-2, enteroviruses, CHIKV, and HIV-1. A number of compounds were able to inhibit the reproduction of SARS-CoV-2 and CHIKV viruses in the micromolar range without noticeable cytotoxicity. The structures of the leader compounds can be used as a starting point for further design of antiviral agents.

Sobre autores

P. Kamzeeva

Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Baruh238@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

L. Kozlovskaya

Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy
of Sciences (Institute of Poliomyelitis), village of the Institute of Poliomyelitis; Sechenov First Moscow State Medical University

Email: Baruh238@mail.ru
Russia, 108819, Moscow, settlement Moskovskiy, 8/1; Russia, 119991, Moscow, ul. Trubetskaya 8/2

E. Belyaev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science

Email: Baruh238@mail.ru
Russia, 119071, Moscow, Leninskiy prosp. 31

A. Chistov

Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Baruh238@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

V. Alferova

Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Baruh238@mail.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

E. Yakovchuk

Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy
of Sciences (Institute of Poliomyelitis), village of the Institute of Poliomyelitis; Sechenov First Moscow State Medical University

Email: Baruh238@mail.ru
Russia, 108819, Moscow, settlement Moskovskiy, 8/1; Russia, 119991, Moscow, ul. Trubetskaya 8/2

M. Borodulina

Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy
of Sciences (Institute of Poliomyelitis), village of the Institute of Poliomyelitis; Sechenov First Moscow State Medical University

Email: Baruh238@mail.ru
Russia, 108819, Moscow, settlement Moskovskiy, 8/1; Russia, 119991, Moscow, ul. Trubetskaya 8/2

E. Karpova

Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy
of Sciences (Institute of Poliomyelitis), village of the Institute of Poliomyelitis

Email: Baruh238@mail.ru
Russia, 108819, Moscow, settlement Moskovskiy, 8/1

E. Kolpakova

Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy
of Sciences (Institute of Poliomyelitis), village of the Institute of Poliomyelitis

Email: Baruh238@mail.ru
Russia, 108819, Moscow, settlement Moskovskiy, 8/1

A. Aralov

Sechenov First Moscow State Medical University

Autor responsável pela correspondência
Email: Baruh238@mail.ru
Russia, 119991, Moscow, ul. Trubetskaya 8/2

Bibliografia

  1. Holmes E.C., Goldstein S.A., Rasmussen A.L., Robertson D.L., Crits-Christoph A., Wertheim J.O., Anthony S.J., Barclay W.S., Boni M.F., Doherty P.C., Farrar J., Geoghegan J.L., Jiang X., Leibowitz J.L., Neil S.J.D., Skern T., Weiss S.R., Worobey M., Andersen K.G., Garry R.F., Rambaut A. // Cell. 2021. V. 184. P. 4848–4856. https://doi.org/10.1016/j.cell.2021.08.017
  2. Triggle C.R., Bansal D., Ding H., Islam M.M., Farag E.A.B.A., Hadi H.A., Sultan A.A. // Front. Immunol. 2021. V. 12. P. 631139. https://doi.org/10.3389/fimmu.2021.631139
  3. van de Leemput J., Han Z. // Mol. Cell. Biol. 2021. V. 41. P. 1–16. https://doi.org/10.1128/MCB.00185-21
  4. Khudhair Z.T., Shihab M.S., Hamah-Ameen B. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 789–804. https://doi.org/10.1134/S1068162021040130
  5. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., Hohmann E., Chu H.Y., Luetkemeyer A., Kline S., de Castilla D.L., Finberg R.W., Dierberg K., Tapson V., Hsieh L., Patterson T.F., Paredes R., Sweeney D.A., Short W.R., Touloumi G., Lye D.C., Ohmagari N., Oh M.-D., Ruiz-Palacios G.M., Benfield T., Fätkenheuer G., Kortepeter M.G., Atmar R.L., Creech C.B., Lundgren J., Babiker A.G., Pett S., Neaton J.D., Burgess T.H., Bonnett T., Green M., Makowski M., Osinusi A., Nayak S., Lane H.C. // N. Engl. J. Med. 2020. V. 383. P. 1813–1826. https://doi.org/10.1056/NEJMoa2007764
  6. Zhou S., Hill C.S., Sarkar S., Tse L.V., Woodburn B.M.D., Schinazi R.F., Sheahan T.P., Baric R.S., Heise M.T., Swanstrom R. // J. Infect. Dis. 2021. V. 224. P. 415–419. https://doi.org/10.1093/infdis/jiab247
  7. Amblard F., LeCher J.C., De R., Goh S.L., Li C., Kasthuri M., Biteau N., Zhou L., Tber Z., Downs-Bowen J., Zandi K., Schinazi R.F. // Pharmaceuticals 2022. V. 15. P. 1144. https://doi.org/10.3390/ph15091144
  8. Urakova N., Kuznetsova V., Crossman D.K., Sokratian A., Guthrie D.B., Kolykhalov A.A., Lockwood M.A., Natchus M.G., Crowley M.R., Painter G.R., Frolova E.I., Frolov I. // J. Virol. 2018. V. 92. P. e01965-17. https://doi.org/10.1128/JVI.01965-17
  9. Agostini M.L., Pruijssers A.J., Chappell J.D., Gribble J., Lu X., Andres E.L., Bluemling G.R., Lockwood M.A., Sheahan T.P., Sims A.C., Natchus M.G., Saindane M., Kolykhalov A.A., Painter G.R., Baric R.S., Denison M.R. // J. Virol. 2019. V. 93. P. e01348-19. https://doi.org/10.1128/JVI.01348-19
  10. Kabinger F., Stiller C., Schmitzová J., Dienemann C., Kokic G., Hillen H.S., Höbartner C., Cramer P. // Nat. Struct. Mol. Biol. 2021. V. 28. P. 740–746. https://doi.org/10.1038/s41594-021-00651-0
  11. Liu F., Chen H.-M., Armstrong Z., Withers S.G. // ACS Cent. Sci. 2022. V. 8. P. 656–662. https://doi.org/10.1021/acscentsci.1c01172
  12. Chen F.-F., Wang F. // Molecules 2009. V. 14. P. 2656–2668. https://doi.org/10.3390/molecules14072656
  13. Wnuk S.F., Chowdhury S.M., Garcia P.I., Robins M.J. // J. Org. Chem. 2002. V. 67. P. 1816–1819. https://doi.org/10.1021/jo010899i
  14. Fedeles B.I., Freudenthal B.D., Yau E., Singh V., Chang S., Li D., Delaney J.C., Wilson S.H., Essigmann J.M. // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 4571–4580. https://doi.org/10.1073/pnas.1507709112
  15. Moffatt J.G., Verheyden J.P.H., Wagner D. // J. Org. Chem. 1971. V. 36. P. 250–254. https://doi.org/10.1021/jo00801a002
  16. Asakura J., Robins M.J. // J. Org. Chem. 1990. V. 55. P. 4928–4933. https://doi.org/10.1021/jo00303a033
  17. McGee D.P.C., Vargeese C., Zhai Y.S., Kirschenheuter G.P., Settle A., Siedem C.R., Pieken W.A. // Nucleosides and Nucleotides. 1995. V. 14. P. 1329–1339. https://doi.org/10.1080/15257779508010694
  18. Mieczkowski A., Wińska P., Kaczmarek M., Mroczkowska M., Garbicz D., Pilżys T., Marcinkowski M., Piwowarski J., Grzesiuk E. // Chem. Pap. 2018. V. 72. P. 981–990. https://doi.org/10.1007/s11696-017-0339-9
  19. Paymode D.J., Vasudevan N., Ahmad S., Kadam A.L., Cardoso F.S.P., Burns J.M., Cook D.W., Stringham R.W., Snead D.R. // Org. Process Res. Dev. 2021. V. 25. P. 1822–1830. https://doi.org/10.1021/acs.oprd.1c00219
  20. Sheahan T.P., Sims A.C., Zhou S., Graham R.L., Pruijssers A.J., Agostini M.L., Leist S.R., Schäfer A., Dinnon K.H., Stevens L.J., Chappell J.D., Lu X., Hughes T.M., George A.S., Hill C.S., Montgomery S.A., Brown A.J., Bluemling G.R., Natchus M.G., Saindane M., Kolykhalov A.A., Painter G., Harcourt J., Tamin A., Thornburg N.J., Swanstrom R., Denison M.R., Baric R.S. // Sci. Transl. Med. 2020. V. 12. P. eabb5883. https://doi.org/10.1126/scitranslmed.abb5883
  21. Mitsuya H., Weinhold K.J., Furman P.A., St Clair M.H., Lehrman S.N., Gallo R.C., Bolognesi D., Barry D.W., Broder S. // Proc. Natl. Acad. Sci. USA. 1985. V. 82. P. 7096–7100. https://doi.org/10.1073/pnas.82.20.7096
  22. Fischl M.A., Richman D.D., Grieco M.H., Gottlieb M.S., Volberding P.A., Laskin O.L., Leedom J.M., Groopman J.E., Mildvan D., Schooley R.T., Jackson G.G., Durack D.T., King D. // N. Engl. J. Med. 1987. V. 317 P. 185–191. https://doi.org/10.1056/NEJM198707233170401
  23. Kozlovskaya L.I., Volok V.P., Shtro A.A., Nikolaeva Y.V., Chistov A.A., Matyugina E.S., Belyaev E.S., Jegorov A.V., Snoeck R., Korshun V.A., Andrei G., Osolodkin D.I., Ishmukhametov A.A., Aralov A.V. // Eur. J. Med. Chem. 2021. V. 220. P. 113467. https://doi.org/10.1016/j.ejmech.2021.113467
  24. Kärber G. // Arch. Exp. Pathol. Pharmakol. 1931. V. 162. P. 480–483.
  25. Ryazantsev D.Y., Myshkin M.Yu., Alferova V.A., Tsvetkov V.B., Shustova E.Y., Kamzeeva P.N., Kovalets P.V., Zaitseva E.R., Baleeva N.S., Zatsepin T.S., Baleeva N.S., Zatsepin T.S., Shenkarev Z.O., Baranov M.S., Kozlovskaya L.I., Aralov A.V. // Biomolecules 2021. V. 11. P. 1409. https://doi.org/10.3390/biom11101409
  26. Zenchenko A.A., Oslovsky V.E., Varizhuk I.V., Karpova E.V., Osolodkin D.I., Kozlovskaya L.I., Ishmukhametov A.A., Drenichev M.S. // Toxicol. In Vitro. 2022. V. 82. P. 105 355. https://doi.org/10.1016/j.tiv.2022.105355

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (53KB)

Declaração de direitos autorais © П.Н. Камзеева, Е.С. Колпакова, Е.В. Карпова, М.О. Бородулина, Е.В. Яковчук, В.А. Алферова, А.А. Чистов, Е.С. Беляев, Л.И. Козловская, А.В. Аралов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies