Therapeutic Nucleic Acids against Herpes Simplex Viruses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Herpes simplex virus (HSV) causes a wide range of diseases, ranging from relatively mild primary skin lesions to severe and often fatal episodes of encephalitis. Currently, the most effective drugs for HSV-infected people are nucleoside analogs (e.g., acyclovir) targeting enzymes encoded by viral DNA. The effectiveness of nucleoside analogs is reduced because of poor solubility in water, rapid intracellular catabolism, high cellular toxicity, and the appearance of resistant viral strains. Antisense technology that exploits nucleic acid fragments (NA-based agents) is a promising alternative to antiviral therapy due to the high affinity of these agents to target nucleic acids, their high solubility in water, and lower cellular toxicity. In the last decade, antisense oligonucleotides have been investigated as potential drugs for various diseases associated with “harmful” nucleic acids. Oligonucleotides with different chemical modifications targeted at specific regions of the HSV genome have shown effectiveness in suppressing the virus. siRNA-based agents have demonstrated prolonged and effective (up to 99%) inhibition of HSV replication. Based on the publications reviewed in the review over the past 30 years, it can be concluded about the prospects of using NA-based agents to combat herpes viral infections.

About the authors

A. S. Levina

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences

Author for correspondence.
Email: asl1032@yandex.ru
Russia, 630090, Novosibirsk, pr. Lavrent’eva 8,

M. N. Repkova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences

Email: asl1032@yandex.ru
Russia, 630090, Novosibirsk, pr. Lavrent’eva 8,

V. F. Zarytova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences

Email: asl1032@yandex.ru
Russia, 630090, Novosibirsk, pr. Lavrent’eva 8,

References

  1. Connolly S.A., Jacksona J.O., Jardetzkyb T., Longneckera R. // Nat. Rev. Microbiol. 2011. V. 9. P. 369–381. https://doi.org/10.1038/nrmicro2548
  2. Crooke R.M., Hoke G.D., Shoemaker J.E. // Antimicrob. Agents Chemother. 1992. V. 36. P. 527–532. https://doi.org/10.1128/AAC.36.3.527
  3. Spear P.G., Longnecker R. // J. Virology. 2003. V. 77. P. 10179–10185.
  4. Всемирная организация здравоохранения. Вирус простого герпеса. https://www.who.int/ru/news-room/fact-sheets/detail/ herpes-simplex-virus
  5. Knipe D.M., Raja P., Lee J.S. // Proc. Nat. Acad. Sci. USA. 2015. V. 112. P. 11993–11994. https://doi.org/10.1073/pnas.1516224112
  6. Zhu S., Viejo-Borbolla A. // Virulence. 2021. V. 12. P. 2670–2702. https://doi.org/10.1080/21505594.2021.1982373
  7. McGeoch D.J., Rixon F.J., Davison A.J. // Virus Res. 2006. V. 117. P. 90–104. https://doi.org/10.1016/j.virusres.2006.01.002
  8. Roizman B., Knipe D.M., Whitley R.J. // Herpes Simplex Viruses. Fields Virology / Eds. Knipe D.M., Howley P.M. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2013.
  9. Sedlackova L., Rice S.A. // J. Virol. 2008. V. 82. P. 1268–1277. https://doi.org/10.1128/JVI.01588-07
  10. Peyman A., Helsberg M., Kretzschmar G., Mag M., Grabley S., Uhlmann E. // Biol. Chem. Hoppe Seyler. 1995. V. 376. P. 195–198. https://doi.org/10.1515/bchm3.1995.376.3.195
  11. Field H.J. // J. Clin. Virol. 2001. V. 21. P. 261–269. https://doi.org/10.1016/s1386-6532(00)00169-4
  12. Breeden C.J., Hall T.C., Tyler H.R. // Ann. Intern. Med. 1966. V. 65. P. 1050–1056. https://doi.org/10.7326/0003-4819-65-5-1050
  13. Shigeta S., Mori S., Kira T., Takahashi K., Kodama E., Konno K., Nagata T., Kato H., Wakayama T., Koike N., Saneyoshi M. // Antivir. Chem. Chemother. 1999. V. 10. P. 195–209. https://doi.org/10.1177/095632029901000404
  14. Chan P.C., Wu C.Y., Chang W.Y., Chang W.T., Alauddin M., Liu R.S., Lin W.J., Chen F.D., Chen C.L., Wang H.E. // Nucl. Med. Biol. 2011. V. 38. P. 987–995. https://doi.org/10.1016/j.nucmedbio.2011.04.003
  15. Lalut J., Tripoteau L., Marty C., Bares H., Bourgougnon N., Felpin F.X. // Bioorg. Med. Chem. Lett. 2012. V. 22. P. 7461–7464. https://doi.org/10.1016/j.bmcl.2012.10.047
  16. Thomson C., Whitley R. // Adv. Exp. Med. Biol. 2011. V. 697. P. 221–230. https://doi.org/10.1007/978-1-4419-7185-2_15
  17. Chong E.M., Wilhelmus K.R., Matoba A.Y., Jones D.B., Coats D.K., Paysse E.A. // Am. J. Ophthalmol. 2004. V. 138. P. 474–475. https://doi.org/10.1016/j.ajo.2004.04.027
  18. Elion G.B. // Am. J. Med. 1982. V. 73. P. 7–13. https://doi.org/10.1016/0002-9343(82)90055-9
  19. Furman P.A., St Clair M.H., Spector T. // J. Biol. Chem. 1984. V. 259. P. 9575–9579.
  20. Chen D., Liu Y., Zhang F., You Q., Ma W., Wu J. // Microbiol. Spectr. V. 9. P. e00646-21. https://doi.org/10.1128/Spectrum.00646-21
  21. Sadowski L.A., Upadhyay R., Greeley Z.W., Margulies B.J. // Viruses. 2021. V. 13. P. 1228. https://doi.org/10.3390/v13071228
  22. Lazarus H.M., Belanger R., Candoni A., Aoun M., Jurewicz R., Marks L. // Antimicrob. Agents Chemother. 1999. V. 43. P. 1192–1197. https://doi.org/10.1128/AAC.43.5.1192
  23. Jung D., Dorr A. // J. Clin. Pharmacol. 1999. V. 39. P. 800–804. https://doi.org/10.1177/00912709922008452
  24. De Clercq E., Andrei G., Snoeck R., De Bolle L., Naesens L., Degrève B., Balzarini J., Zhang Y., Schols D., Leyssen P., Ying C., Neyts J. // Nucleosides Nucleotides Nucleic Acids. 2001. V. 20. P. 271–285. https://doi.org/10.1081/NCN-100002298
  25. Birkmann A., Zimmermann H. // Curr. Opin. Virol. 2016. V. 18. P. 9–13. https://doi.org/10.1016/j.coviro.2016.01.013
  26. Meier P., Dautheville-Guibal S., Ronco P.M., Rossert J. // Nephrol. Dial. Transplant. 2002. V. 17. P. 148–149. https://doi.org/10.1093/ndt/17.1.148
  27. Ahmed A. // Infect. Disord. Drug Targets. 2011. V. 11. P. 475–503. https://doi.org/10.2174/187152611797636640
  28. Griffiths P., Lumley S. // Curr. Opin. Infect. Dis. 2014. V. 27. P. 554–559. https://doi.org/10.1097/QCO.0000000000000107
  29. Aduma P., Connelly M.C., Srinivas R.V., Fridland A. // Mol. Pharmacol. 1995. V. 47. P. 816–822.
  30. Hagedorn P.H., Yakimov V., Ottosen S., Kammler S., Nielsen N.F., Høg A.M., Hedtjärn M., Meldgaard M., Møller M.R., Orum H., Koch T., Lindow M. // Nucleic Acid Ther. 2013. V. 23. P. 302–310. https://doi.org/10.1089/nat.2013.0436
  31. Mescalchin A., Restle T. // Molecules. 2011. V. 16. P. 1271–1296. https://doi.org/10.3390/molecules16021271
  32. Belikova A.M., Zarytova V.F., Grineva N.I. // Tetrahedron Lett. 1967. V. 37. P. 3557–3562. https://doi.org/10.1016/s0040-4039(01)89794-x
  33. Zamecnik P., Stephenson M. // Proc. Natl. Acad. Sci. USA. 1978. V. 75. P. 280–284. https://doi.org/10.1073/pnas.75.1.280
  34. Bennett C.F. // Annu. Rev. Med. 2019. V. 70. P. 307–321. https://doi.org/10.1146/annurev-med-041217-010829
  35. Shen X., Corey D.R. // Nucleic Acids Res. 2018. V. 46. P. 1584–1600. https://doi.org/10.1093/nar/gkx1239
  36. Havens M.A., Hastings M.L. // Nucleic Acids Res. 2016. V. 44. P. 6549–6563. https://doi.org/10.1093/nar/gkw533
  37. Castanotto D., Stein C.A. // Curr. Opin. Oncol. 2014. V. 26. P. 584–589. https://doi.org/10.1097/CCO.0000000000000127
  38. Hnik P., Boyer D.S., Grillone L.R., Clement J.G., Henry S.P., Green E.A. // J. Diabetes Sci. Technol. 2009. V. 3. P. 924–930. https://doi.org/10.1177/193229680900300440
  39. Amado D.A., Davidson B.L. // Mol. Ther. 2021. V. 29. P. 345–358. https://doi.org/10.1016/j.ymthe.2021.04.008
  40. Seguin R.M., Ferrary N. // Expert Opin. Investig. Drugs. 2009. V. 18. P. 1505–1517. https://doi.org/10.1517/13543780903179294
  41. Roman-Blas J.A., Jimenez S.A. // Osteoarthritis Cartilage. 2006. V. 14. P. 839–848. https://doi.org/10.1016/j.joca.2006.04.008
  42. Matzen K., Elzaouk L., Matskevich A.A., Nitzsche A., Heinrich J., Moelling K. // Nat. Biotechnol. 2007. V. 25. P. 669–674. https://doi.org/10.1038/nbt1311
  43. Janssen H.L.A., Reesink H.W., Lawitz E.J., Zeuzem S., Rodriguez-Torres M., Patel K., van der Meer A.J., Patick A.K., Chen A., Zhou Y., Persson R., King B.D., Kauppinen S., Levin A.A., Hodges M.R. // N. Engl. J. Med. 2013. V. 368. P. 1685–1694. https://doi.org/10.1056/NEJMoa1209026
  44. Wong J.P., Christopher M.E., Salazar A.M., Sun L.Q., Viswanathan S., Wang M., Saravolac E.G., Cairns M.J. // Front. Biosci. Schol. 2010. V. 2. P. 791–800. https://doi.org/10.2741/s102
  45. Ge Q., Pastey M., Kobasa D., Puthavathana P., Lupfer C., Bestwick R.K., Iversen P.L., Chen J., Stein D.A. // Antimicrob. Agents Chemother. 2006. V. 50. P. 3724–3733. https://doi.org/10.1128/AAC.00644-06
  46. Zhang T., Wang T., Zhao P., Liang M., Gao Y., Yang S., Qin C., Wang C., Xia X. // Int. Immunopharmacol. 2011. V. 11. P. 2057–2061. https://doi.org/10.1016/j.intimp.2011.08.019
  47. Levina A.S., Repkova M.N., Ismagilov Z.R., Shikina N.V., Malygin E.G., Mazurkova N.A., Zinov’ev V.V., Evdokimov A.A., Baiborodin S.I., Zarytova V.F. // Sci. Rep. 2012. V. 2. P. 256. https://doi.org/10.1038/srep00756
  48. Levina A.S., Repkova M.N., Bessudnova E.V., Filippova E.I., Mazurkova N.A., Zarytova V.F. // Beilstein J. Nanotechnol. 2016. V. 7. P. 1166–1173. https://doi.org/10.3762/bjnano.7.108
  49. Perry C.M., Balfour J.A. // Drugs. 1999. V. 57. P. 375–380. https://doi.org/10.2165/00003495-199957030-00010
  50. Yu A.M., Tu M.J. // Pharmacol. Ther. 2022. V. 230. P. 107 967. https://doi.org/10.1016/j.pharmthera.2021.107967
  51. Cantin E.M., Podsakoff G., Willey D.E., Openshaw H. // Adv. Exp. Med. Biol. 1992. V. 312. P. 139–149. https://doi.org/10.1007/978-1-4615-3462-4
  52. Aurelian L., Smith C.C. // Antisense Nucleic Acid Drug Dev. 2000. V. 10. P. 77–85. https://doi.org/10.1089/oli.1.2000.10.77
  53. Kulka M., Wachsman M., Miura S., Fishelevich R., Miller P.S., Ts’o P.O., Aurelian L. // Antiviral. Res. 1993. V. 20. P. 115–130. https://doi.org/10.1016/0166-3542(93)90002-z
  54. Kulka M., Smith C.C., Levis J., Fishelevich R., Hunter J.C., Cushman C.D., Miller P.S., Ts’o P.O. // Antimicrob. Agents Chemother. 1994. V. 38. P. 675–680. https://doi.org/10.1128/AAC.38.4.675
  55. Blumenfeld M., Meguenni S., Poddevin B., Vasseur M. // WO1995004141A1, 09.02.1995.
  56. Peyman A., Helsberg M., Kretzschmar G., Mag M., Ryte A., Uhlmann E. // Antivir. Res. 1997. V. 33. P. 135–139. https://doi.org/10.1016/s0166-3542(96)01003-0
  57. Birch-Hirschfeld E., Knorre C.M., Stelzner A., Schmidtke M. // Nucleos. Nucleot. 1997. V. 16. P. 623–628. https://doi.org/10.1080/07328319708002926
  58. Shoji Y., Shimada J., Mizushima Y., Iwasawa A., Nakamura Y., Inouye K., Azuma T., Sakurai M., Nishimura T. // Antimicrob. Agents Chemother. 1996. V. 40. P. 1670–1675. https://doi.org/10.1128/AAC.40.7.1670
  59. Shoji Y., Norimatsu M., Shimada J., Mizushima Y. // Antisense Nucleic Acid Drug Dev. 1998. V. 8. P. 255–263. https://doi.org/10.1089/oli.1.1998.8.255
  60. Shoji Y., Ishige H., Tamura N., Iwatani W., Norimatsu M., Shimada J., Mizushima Y. // J. Drug Target 1998. V. 5. P. 261–273. https://doi.org/0.3109/10611869808995880
  61. Vinogradov S.V., Suzdaltseva Y., Alakhov V.Y., Kabanov A.V. // Biochem. Biophys. Res. Commun. 1994. V. 203. P. 959–966. https://doi.org/10.1006/bbrc.1994.2275
  62. Clusel C., Meguenni S., Elias I., Vasseur M., Blumenfeld M. // Gene Expr. 1995. V. 4. P. 301–309.
  63. Jacob A., Duval-Valentin G., Ingrand D., Thuong N.T. // Eur. J. Biochem. 1993. V. 216. P. 19–24. https://doi.org/10.1111/j.1432-1033.1993.tb18111.x
  64. Chiba A., Ogasawara M., Yoshida I., Knox Y.M., Suzutani T. // Tohoku J. Exp. Med. 2000. V. 192. P. 141–149. https://doi.org/doi/10.1620/tjem.192.141
  65. Hoke G.D., Draper K., Freier S.M., Gonzalez C., Driver V.B., Zounes M.C., Ecker D.J. // Nucleic Acids Res. 1991. V. 19. P. 5743–5748. https://doi.org/10.1093/nar/19.20.5743
  66. Draper K.G., Ecker D.J., Mirabelli C.K., Crooke S.T. // Patent US 6310044 B1, publ. 30.10.2001.
  67. Nelson M.H., Stein D.A., Kroeker A.D., Hatlevig S.A., Iversen P.L., Moulton H.M. // Bioconjug. Chem. 2005. V. 16. P. 959–966. https://doi.org/10.1021/bc0501045
  68. Patel D., Opriessnig T., Stein D.A., Halbur P.G., Meng X.J., Iversen P.L., Zhang Y.J. // Antiviral Res. 2008. V. 77. P. 95–107. https://doi.org/10.1016/j.antiviral.2007.09.002
  69. Ge Q., McManus M.T., Nguyen T., Shen C.H., Sharp P.A., Eisen H.N., Chen J. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 2718–2723. https://doi.org/10.1073/pnas.0437841100
  70. Moerdyk-Schauwecker M., Stein D.A., Eide K., Blouch R.E., Bildfell R., Iversen P., Jin L. // Antiviral Res. 2009. V. 84. P. 131–141. https://doi.org/10.1016/j.antiviral.2009.07.020
  71. Smith C.C., Kulka M., Aurelian L. // Int. J. Oncol. 2000. V. 17. P. 841–850. https://doi.org/10.3892/ijo.17.4.841
  72. Eide K., Moerdyk-Schauwecker M., Stein D.A., Bildfell R., Koelle D.M., Jin L. // Antivir. Ther. 2010. V. 15. P. 1141–1149. https://doi.org/10.3851/IMP1694
  73. Wheeler L.A. // Infect. Dis. Obstet. Gynecol. 2014. V. 2014. P. 125087. https://doi.org/10.1155/2014/125087
  74. Katakowski J.A., Palliser D. // Curr. Opin. Mol. Ther. 2010. V. 12. P. 192–202. https://pubmed.ncbi.nlm.nih.gov/20373263
  75. Manda V., Josyula V.R., Hariharapura R.C. // VirusDis. 2019. V. 30. P. 180–185. https://doi.org/10.1007/s13337-018-00508-z
  76. Baxi K., Sawarkar S., Momin M., Patel V., Fernandes T. // Drug Del. Transl. Res. 2020. V. 10. P. 962–974. https://doi.org/10.1007/s13346-020-00741-4
  77. Mollaei H., Monavari S., Arabzadeh S., Shahrabadi M.S., Fazlalipour M. // J. Antivir. Antiretrovir. 2014. V. 6. P. 114–119. https://doi.org/10.4172/JAA.10000106
  78. Jbara-Agbaria D., Blondzik S., Burger-Kentischer A., Agbaria M., Nordling-David M.M., Giterman A., Aizik G., Rupp S., Golomb G. // Pharmaceutics. 2022. V. 14. P. 633. https://doi.org/10.3390/pharmaceutics14030633
  79. Song B., Liu X., Wang Q., Zhang R., Yang T., Han Z., Xu Y. // J. Neurovirol. 2016. V. 22. P. 799–807. https://doi.org/10.1007/s13365-016-0453-4
  80. Paavilainen H., Lehtinen J., Romanovskaya A., Nygårdas M., Bamford D.H., Poranen M.M., Hukkanen V. // J. Med. Virol. 2016. V. 88. P. 2196–2205. https://doi.org/10.1002/jmv.24578
  81. Paavilainen H., Lehtinen J., Romanovskaya A., Nygårdas M., Bamford D.H., Poranen M.M., Hukkanen V. // Antivir. Ther. 2017. V. 22. P. 631–637. https://doi.org/10.3851/IMP3153
  82. Kalke K., Lehtinen J., Gnjatovic J., Lund L.M., Nyman M.C., Paavilainen H., Orpana J., Lasanen T., Frejborg F., Levanova A.A., Vuorinen T., Poranen M.M., Hukkanen V. // Viruses. 2020. V. 12. P. 1434. https://doi.org/10.3390/v12121434
  83. Kalke K., Lund L.M., Nyman M.C., Levanova A.A., Urtti A., Poranen M.M., Hukkanen V., Paavilainen H. // PLoS Pathog. 2022. V. 18. e1010688. https://doi.org/10.1371/journal.ppat.1010688
  84. Steinbach J.M., Weller C.E., Booth C.J., Saltzman W.M. // J. Control. Release. 2012. V. 162. P. 102–110. https://doi.org/10.1016/j.jconrel.2012.06.008
  85. Wu Y., Navarro F., Lal A., Basar E., Pandey R.K., Manoharan M., Feng Y., Lee S.J., Lieberman J., Palliser D. // Cell Host Microbe. 2009. V. 5. P. 84–94. https://doi.org/10.1016/j.chom.2008.12.003
  86. Palliser D., Chowdhury D., Wang Q.Y., Lee S.J., Bronson R.T., Knipe D.M., Lieberman J. // Nature. 2006. V. 439. P. 89–94. https://doi.org/10.1038/nature04263
  87. Wolff N., Kollenda S., Klein K., Loza K., Heggen M., Brochhagen L., Witzke O., Krawczyk A., Hilger I., Epple M. // Nanoscale Adv. 2022. V. 4. P. 4502–4516. https://doi.org/10.1039/d2na00250g
  88. Currie S., Kim S., Gu X., Ren X., Lin F., Liu S., Yang C., Kim J., Liu S. // Colloids Surf. B Biointerfaces. 2020. V. 196. P. 111287. https://doi.org/10.1016/j.colsurfb.2020.111287
  89. Grajewski R.S., Li J., Wasmuth S., Hennig M., Bauer D., Heiligenhaus A. // Graefes Arch. Clin. Exp. Ophthalmol. 2012. V. 250. P. 231–238. https://doi.org/10.1007/s00417-011-1840-4
  90. Li J., Wasmuth S., Bauer D., Baehler H., Hennig M., Heiligenhaus A. // Graefes Arch. Clin. Exp. Ophthalmol. 2008. V. 246. P. 1265–1273. https://doi.org/10.1007/s00417-008-0839-y
  91. Mei H., Xing Y., Yang J., Wang A., Xu Y., Heiligenhaus A. // Pathobiology. 2009. V. 76. P. 45–50. https://doi.org/10.1159/000178155

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (367KB)
3.

Download (54KB)
4.

Download (70KB)

Copyright (c) 2023 А.С. Левина, М.Н. Репкова, В.Ф. Зарытова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».