Bacteria Adaptation Mechanisms to Stress Conditions with Small Non-Coding RNAs Participation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Despite the fact that most of the bacterial genome encodes certain protein molecules, with the development of transcriptomic technologies, many genes have been discovered that transcribe RNA which is not translated into proteins. Such RNAs are called non-coding RNAs (ncRNAs). The study of only a small number of them shows that ncRNAs often act as regulatory molecules in various cellular processes: maintenance of cell wall homeostasis, protection against pathogens, virulence, etc. A special place among them is occupied by the so-called small ncRNAs with a length of ~50–300 nucleotide residues. In most cases, they form duplexes with the mRNA of certain genes, which affects the expression of the latter. However, some ncRNAs are able to directly bind to the target protein. Similar mechanisms of action of small ncRNAs give them some advantages in regulating various cellular processes compared to protein regulatory molecules. For example, when responding to an external or internal signal through small ncRNAs, the cell will need to spend less time and resources due to the absence of the translation stage. Moreover, some ncRNAs have no complete complementarity to their target RNAs, which makes the regulation more flexible, as it allows ncRNAs to participate in the response simultaneously to various cellular signals. In this review, we considered the general mechanisms by which various small ncRNAs allow bacteria to adapt to certain stressful conditions, as well as specific examples of their action in various prokaryotic organisms.

Авторлар туралы

A. Karpov

Chemistry Department, Lomonosov Moscow State University

Email: oretskaya@belozersky.msu.ru
Russia, 119991, Moscow, Leninskye gory 1

D. Elkina

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: oretskaya@belozersky.msu.ru
Russia, 119991, Moscow, Leninskye gory 1

T. Oretskaya

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: oretskaya@belozersky.msu.ru
Russia, 119991, Moscow, Leninskye gory 1

E. Kubareva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: oretskaya@belozersky.msu.ru
Russia, 119991, Moscow, Leninskye gory 1

Әдебиет тізімі

  1. Crick F.H.C. // Mol. Biol. 1956. V. 12. P. 138–163.
  2. Wassarman K.M. // Trends Microbiol. 1999. V. 7. P. 37–45. https://doi.org/10.1016/S0966-842X(98)01379-1
  3. Keiler K.C., Waller P.R.H., Sauer R.T. // Science. 1996. V. 271. P. 990–993. https://doi.org/10.1126/science.271.5251.990
  4. Zhang A., Altuvia S., Tiwari A., Argaman L., Hengge-Aronis R., Storz G. // EMBO J. 1998. V. 17. P. 6061–6068. https://doi.org/10.1093/emboj/17.20.6061
  5. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. // Cell. 1983. V. 35. P. 849–857. https://doi.org/10.1016/0092-8674(83)90117-4
  6. Hoe C.H., Raabe C.A., Rozhdestvensky T.S., Tang T.H. // Int. J. Med. Microbiol. 2013. V. 303. P. 217–229. https://doi.org/10.1016/j.ijmm.2013.04.002
  7. Ажикина Т.Л., Игнатов Д.В., Салина Е.Г., Фурсов М.В., Капрельянц А.С. // Усп. биол. химии. 2015. Т. 55. С. 3–32. [Azhikina T.L., Ignatov D.V., Salina E.G., Fursov M.V., Kaprelyants A.S. // Biochemistry (Moscow). 2015. V. 80. P. 1633–1646.] https://doi.org/10.1134/S0006297915130015
  8. Beltran M., García de Herreros A. // Transcription. 2016. V. 7. P. 39–43. https://doi.org/10.1080/21541264.2016.1148804
  9. Crampton N., Bonass W.A., Kirkham J., Rivetti C., Thomson N.H. // Nucleic Acids Res. 2006. V. 34. P. 5416–5425. https://doi.org/10.1093/nar/gkl668
  10. Hao N., Crooks M.T., Palmer A.C., Dodd I.B., Shearwin K.E. // FEBS Lett. 2019. V. 593. P. 903–917. https://doi.org/10.1002/1873-3468.13365
  11. Callen B.P., Shearwin K.E., Egan J.B. // Mol. Cell. 2004. V. 14. P. 647–656. https://doi.org/10.1016/j.molcel.2004.05.010
  12. Sneppen K., Dodd I.B., Shearwin K.E., Palmer A.C., Schubert R.A., Callen B.P., Egan J.B. // J. Mol. Biol. 2005. V. 346. P. 399–409. https://doi.org/10.1016/j.jmb.2004.11.075
  13. Stork M., Di Lorenzo M., Welch T.J., Crosa J.H. // J. Bacteriol. 2007. V. 189. P. 3479–3488. https://doi.org/10.1128/JB.00619-06
  14. Brennan C.A., Dombroski A.J., Platt T. // Cell. 1987. V. 48. P. 945–952. https://doi.org/10.1016/0092-8674(87)90703-3
  15. Cheng Y., Zhang T., Wang L., Chen W. // Appl. Environ. Microbiol. 2020. V. 86. P. e00517-20. https://doi.org/10.1128/AEM.00517-20
  16. Kawano M., Aravind L., Storz G. // Mol. Microbiol. 2007. V. 64. P. 738–754. https://doi.org/10.1111/j.1365-2958.2007.05688.x
  17. Asano K., Niimi T., Yokoyama S., Mizobuchi K. // J. Biol. Chem. 1998. V. 273. P. 11826–11838. https://doi.org/10.1074/jbc.273.19.11826
  18. Brantl S. // Plasmid. 2015. V. 78. P. 4–16. https://doi.org/10.1016/j.plasmid.2014.07.004
  19. Mark Glover J.N., Chaulk S.G., Edwards R.A., Arthur D., Lu J., Frost L.S. // Plasmid. 2015. V. 78. P. 79–87. https://doi.org/10.1016/j.plasmid.2014.07.003
  20. Ross J.A., Ellis M.J., Hossain S., Haniford D.B. // RNA. 2013. V. 19. P. 670–684. https://doi.org/10.1261/rna.037747.112
  21. Davis E., Chen J., Leon K., Darst S.A., Campbell E.A. // Nucleic Acids Res. 2015. V. 43. P. 433–445. https://doi.org/10.1093/nar/gku1231
  22. Rammohan J., Ruiz Manzano A., Garner A.L., Stallings C.L., Galburt E.A. // Nucleic Acids Res. 2015. V. 43. P. 3272–3285. https://doi.org/10.1093/nar/gkv078
  23. Stallings C.L., Stephanou N.C., Chu L., Hochschild A., Nickels B.E., Glickman M.S. // Cell. 2009. V. 138. P. 146–159. https://doi.org/10.1016/j.cell.2009.04.041
  24. Srivastava D.B., Leon K., Osmundson J., Garner A.L., Weiss L.A., Westblade L.F., Glickman M.S., Landick R., Darst S.A., Stallings C.L., Campbell E.A. // Proc. Natl. Acad. Sci. 2013. V. 110. P. 12619–12624. https://doi.org/10.1073/pnas.1308270110
  25. Li X., Chen F., Liu X., Xiao J., Andongma B.T., Tang Q., Cao X., Chou S.H., Galperin M.Y., He J. // eLife. 2022. V. 11. P. e73347. https://doi.org/10.7554/eLife.73347
  26. Acuña L.G., Barros M.J., Nuñez P., Peñaloza D., Montt F., Pedraza D., Crossley K., Gil F., Fuentes J.A., Calderón I.L. // Biochem. Biophys. Res. Commun. 2020. V. 526. P. 706–712. https://doi.org/10.1016/j.bbrc.2020.03.131
  27. Padalon-Brauch G., Hershberg R., Elgrably-Weiss M., Baruch K., Rosenshine I., Margalit H., Altuvia S. // Nucleic Acids Res. 2008. V. 36. P. 1913–1927. https://doi.org/10.1093/nar/gkn050
  28. Schild S., Tamayo R., Nelson E.J., Qadri F., Calderwood S.B., Camilli A. // Cell Host Microbe. 2007. V. 2. P. 264–277. https://doi.org/10.1016/j.chom.2007.09.004
  29. World Health Organization // Wkly. Epidemiol. Rec. 2021. V. 96. P. 445–460.
  30. Chang H., Replogle J.M., Vather N., Tsao-Wu M., Mistry R., Liu J.M. // RNA Biol. 2015. V. 12. P. 136–148. https://doi.org/10.1080/15476286.2015.1017203
  31. Han K., Kim K.S., Bak G., Park H., Lee Y. // Nucleic Acids Res. 2010. V. 38. P. 5851–5866. https://doi.org/10.1093/nar/gkq292
  32. Maki K., Morita T., Otaka H., Aiba H. // Mol. Microbiol. 2010. V. 76. P. 782–792. https://doi.org/10.1111/j.1365-2958.2010.07141.x
  33. Zhang M.G., Liu J.M. // J. Bacteriol. 2019. V. 201. https://doi.org/10.1128/JB.00178-19
  34. Otaka H., Ishikawa H., Morita T., Aiba H. // Proc. Natl. Acad. Sci. 2011. V. 108. P. 13059–13064. https://doi.org/10.1073/pnas.1107050108
  35. Franze de Fernandez M.T., Eoyang L., August J.T. // Nature. 1968. V. 219. P. 588–590. https://doi.org/10.1038/219588a0
  36. Schumacher M.A., Pearson R.F., Møller T., Valentin-Hansen P., Brennan R.G. // EMBO J. 2002. V. 21. P. 3546–3556. https://doi.org/10.1093/emboj/cdf322
  37. Santiago-Frangos A., Woodson S.A. // WIREs RNA. 2018. V. 9. P. e1475. https://doi.org/10.1002/wrna.1475
  38. Schu D.J., Zhang A., Gottesman S., Storz G. // EMBO J. 2015. V. 34. P. 2557–2573. https://doi.org/10.15252/embj.201591569
  39. Zhou L., Hang J., Zhou Y., Wan R., Lu G., Yin P., Yan C., Shi Y. // Nature. 2014. V. 506. P. 116–120. https://doi.org/10.1038/nature12803
  40. De Lay N., Gottesman S. // Mol. Microbiol. 2012. V. 86. P. 524–538. https://doi.org/10.1111/j.1365-2958.2012.08209.x
  41. Nielsen J.S., Larsen M.H., Lillebæk E.M.S., Bergholz T.M., Christiansen M.H.G., Boor K.J., Wiedmann M., Kallipolitis B.H. // PLoS One. 2011. V. 6. P. e19019. https://doi.org/10.1371/journal.pone.0019019
  42. Andreassen P.R., Pettersen J.S., Szczerba M., Valentin-Hansen P., Møller-Jensen J., Jørgensen M.G. // Nucleic Acids Res. 2018. V. 46. P. 6746–6760. https://doi.org/10.1093/nar/gky479
  43. Massé E., Vanderpool C.K., Gottesman S. // J. Bacteriol. 2005. V. 187. P. 6962–6971. https://doi.org/10.1128/JB.187.20.6962-6971.2005
  44. Pulvermacher S.C., Stauffer L.T., Stauffer G.V. // Microbiology. 2009. V. 155. P. 106–114. https://doi.org/10.1099/mic.0.023598-0
  45. Durand S., Storz G. // Mol. Microbiol. 2010. V. 75. P. 1215–1231. https://doi.org/10.1111/j.1365-2958.2010.07044.x
  46. Argaman L., Altuvia S. // J. Mol. Biol. 2000. V. 300. P. 1101–1112. https://doi.org/10.1006/jmbi.2000.3942
  47. Flemming H.C., Wingender J. // Nat. Rev. Microbiol. 2010. V. 8. P. 623–633. https://doi.org/10.1038/nrmicro2415
  48. White A.P., Gibson D.L., Collinson S.K., Banser P.A., Kay W.W. // J. Bacteriol. 2003. V. 185. P. 5398–5407. https://doi.org/10.1128/JB.185.18.5398-5407.2003
  49. Ogasawara H., Yamada K., Kori A., Yamamoto K., Ishihama A. // Microbiology. 2010. V. 156. P. 2470–2483. https://doi.org/10.1099/mic.0.039131-0
  50. Ferrières L., Clarke D.J. // Mol. Microbiol. 2003. V. 50. P. 1665–1682. https://doi.org/10.1046/j.1365-2958.2003.03815.x
  51. Holmqvist E., Reimegård J., Sterk M., Grantcharova N., Römling U., Wagner E.G.H. // EMBO J. 2010. V. 29. P. 1840–1850. https://doi.org/10.1038/emboj.2010.73
  52. Jørgensen M.G., Nielsen J.S., Boysen A., Franch T., Møller-Jensen J., Valentin-Hansen P. // Mol. Microbiol. 2012. V. 84. P. 36–50. https://doi.org/10.1111/j.1365-2958.2012.07976.x
  53. Bordeau V., Felden B. // Nucleic Acids Res. 2014. V. 42. P. 4682–4696. https://doi.org/10.1093/nar/gku098
  54. Carpousis A. // Annu. Rev. Microbiol. 2007. V. 61. P. 71–87. https://doi.org/10.1146/annurev.micro.61.080706.093440
  55. Cassat J.E., Skaar E.P. // Cell Host Microbe. 2013. V. 13. P. 509–519. https://doi.org/10.1016/j.chom.2013.04.010
  56. Chiabrando D., Vinchi F., Fiorito V., Mercurio S., Tolosano E. // Front. Pharmacol. 2014. V. 5. P. 61. https://doi.org/10.3389/fphar.2014.00061
  57. Duong T., Park K., Kim T., Kang S.W., Hahn M.J., Hwang H.Y., Jang I., Oh H.B., Kim K.K. // Acta Crystallogr. D Biol. Crystallogr. 2014. V. 70. P. 1498–1498. https://doi.org/10.1107/S1399004714007391
  58. Choby J.E., Skaar E.P. // J. Mol. Biol. 2016. V. 428. P. 3408–3428. https://doi.org/10.1016/j.jmb.2016.03.018
  59. Dos Santos P.T., Menendez-Gil P., Sabharwal D., Christensen J.H., Brunhede M.Z., Lillebæk E.M.S., Kallipolitis B.H. // Front. Microbiol. 2018. V. 9. P. 599. https://doi.org/10.3389/fmicb.2018.00599
  60. Brunhede M.Z., Santos P.T.D., Gal L., Garmyn D., Kallipolitis B.H., Piveteau P. // FEMS Microbiol. Lett. 2020. V. 367. P. fnaa188. https://doi.org/10.1093/femsle/fnaa188
  61. Aslan H., Petersen M.E., De Berardinis A., Zacho Brunhede M., Khan N., Vergara A., Kallipolitis B., Meyer R.L. // Front. Microbiol. 2021. V. 12. P. 618174. https://doi.org/10.3389/fmicb.2021.618174
  62. Sievers S., Lund A., Menendez-Gil P., Nielsen A., Storm Mollerup M., Lambert Nielsen S., Buch Larsson P., Borch-Jensen J., Johansson J., Kallipolitis B.H. // RNA Biol. 2015. V. 12. P. 985–997. https://doi.org/10.1080/15476286.2015.1071011
  63. Hancock R.E.W., Chapple D.S. // Antimicrob. Agents Chemother. 1999. V. 43. P. 1317–1323. https://doi.org/10.1128/AAC.43.6.1317
  64. Khan Z., Kim S.G., Jeon Y.H., Khan H.U., Son S.H., Kim Y.H. // Bioresour. Technol. 2008. V. 99. P. 3016–3023. https://doi.org/10.1016/j.biortech.2007.06.031
  65. Zhang L., Dhillon P., Yan H., Farmer S., Hancock R.E.W. // Antimicrob. Agents Chemother. 2000. V. 44. P. 3317–3321. https://doi.org/10.1128/AAC.44.12.3317-3321.2000
  66. Moon K., Gottesman S. // Mol. Microbiol. 2009. V. 74. P. 1314–1330. https://doi.org/10.1111/j.1365-2958.2009.06944.x
  67. Véscovi E.G., Soncini F.C., Groisman E.A. // Cell. 1996. V. 84. P. 165–174. https://doi.org/10.1016/S0092-8674(00)81003-X
  68. Acuña L.G., Barros M.J., Peñaloza D., Rodas P.I., Paredes-Sabja D., Fuentes J.A., Gil F., Calderón I.L. // Microbiology. 2016. V. 162. P. 1996–2004. https://doi.org/10.1099/mic.0.000365
  69. Grigorov A., Bychenko O., Salina E.G., Skvortsova Y., Mazurova A., Skvortsov T., Kaprelyants A., Azhikina T. // Int. J. Mol. Sci. 2021. V. 22. P. 11536. https://doi.org/10.3390/ijms222111536
  70. Houghton J., Rodgers A., Rose G., D’Halluin A., Kipkorir T., Barker D., Waddell S.J., Arnvig K.B. // Microbiol. Spectr. 2021. V. 9. P. e01095-21. https://doi.org/10.1128/Spectrum.01095-21
  71. Острик А.А., Салина Е.Г., Скворцова Ю.В., Григоров А.С., Быченко О.С., Капрельянц А.С., Ажикина Т.Л. // Прикладная биохимия и микробиология. 2020. Т. 56. С. 336–341. [Ostrik A.A., Salina E.G., Kaprelyants A.S., Skvortsova Y.V., Grigorov A.S., Bychenko O.S., Azhikina T.L. // Appl. Biochem. Microbiol. 2020. V. 56. P. 381–386.] https://doi.org/10.31857/S0555109920040121
  72. Острик А.А., Ажикина Т.Л., Салина Е.Г. // Усп. биол. химии. 2021. Т. 61. С. 229–262. [Ostrik A.A., Azhikina T.L., Salina E.G. // Biochemistry (Moscow). 2021. V. 86. Suppl. Iss. 1. P. S109–S119.] https://doi.org/10.1134/S000629792114008X
  73. Göpel Y., Papenfort K., Reichenbach B., Vogel J., Görke B. // Genes Dev. 2013. V. 27. P. 552–564. https://doi.org/10.1101/gad.210112.112
  74. Khan M.A., Durica-Mitic S., Göpel Y., Heermann R., Görke B. // EMBO J. 2020. V. 39. P. e103848. https://doi.org/10.15252/embj.2019103848
  75. Urban J.H., Vogel J. // PLoS Biol. 2008. V. 6. P. e64. https://doi.org/10.1371/journal.pbio.0060064
  76. Göpel Y., Görke B. // PLoS Genet. 2018. V. 14. P. e1007547. https://doi.org/10.1371/journal.pgen.1007547
  77. DebRoy S., Gebbie M., Ramesh A., Goodson J.R., Cruz M.R., van Hoof A., Winkler W.C., Garsin D.A. // Science. 2014. V. 345. P. 937–940. https://doi.org/10.1126/science.1255091
  78. Chen J., Wassarman K.M., Feng S., Leon K., Feklistov A., Winkelman J.T., Li Z., Walz T., Campbell E.A., Darst S.A. // Mol. Cell. 2017. V. 68. P. 388–397. https://doi.org/10.1016/j.molcel.2017.09.006
  79. Barrick J.E., Sudarsan N., Weinberg Z., Ruzzo W.L., Breaker R.R. // RNA. 2005. V. 11. P. 774–784. https://doi.org/10.1261/rna.7286705
  80. Steuten B., Setny P., Zacharias M., Wagner R. // J. Mol. Biol. 2013. V. 425. P. 3649–3661. https://doi.org/10.1016/j.jmb.2013.07.008
  81. Lal A., Krishna S., Seshasayee A.S.N. // G3 (Bethesda). 2018. V. 8. P. 2079–2089. https://doi.org/10.1534/g3.118.200265
  82. Neusser T., Polen T., Geissen R., Wagner R. // BMC Genomics. 2010. V. 11. P. 165. https://doi.org/10.1186/1471-2164-11-165
  83. Буренина О.Ю., Елкина Д.А., Хартманн Р.К., Орецкая Т.С., Кубарева Е.А. // Биохимия. 2015. Т. 80. С. 1641–1661. [Burenina O.Y., Elkina D.A., Oretskaya T.S., Hartmann R.K., Kubareva E.A. // Biochemistry (Moscow). 2015. V. 80. P. 1429–1446.] https://doi.org/10.1134/s0006297915110048
  84. Burenina O.Y., Elkina D.A., Ovcharenko A., Bannikova V.A., Schlüter M.A.C., Oretskaya T.S., Hartmann R.K., Kubareva E.A. // Int. J. Mol. Sci. 2022. V. 23. P. 3653. https://doi.org/10.3390/ijms23073653
  85. Wassarman K.M. // Microbiol. Spectr. 2018. V. 6. P. 1–20. https://doi.org/10.1128/microbiolspec.rwr-0019-2018
  86. Burenina O.Y., Hoch P.G., Damm K., Salas M., Zatsepin T.S., Lechner M., Oretskaya T.S., Kubareva E.A., Hartmann R.K. // RNA. 2014. V. 20. P. 348–359. https://doi.org/10.1261/rna.042077.113
  87. Hoch P.G., Burenina O.Y., Weber M.H.W., Elkina D.A., Nesterchuk M.V., Sergiev P.V., Hartmann R.K., Kubareva E.A. // Biochimie. 2015. V. 117. P. 87–99. https://doi.org/10.1016/j.biochi.2014.12.019
  88. Thüring M., Ganapathy S., Schlüter M.A.C., Lechner M., Hartmann R.K. // RNA Biol. 2021. V. 18. P. 79–92. https://doi.org/10.1080/15476286.2020.1795408
  89. Berghoff B.A., Glaeser J., Sharma C.M., Vogel J., Klug G. // Mol. Microbiol. 2009. V. 74. P. 1497–1512. https://doi.org/10.1111/j.1365-2958.2009.06949.x
  90. Elkina D., Weber L., Lechner M., Burenina O., Weisert A., Kubareva E., Hartmann R.K., Klug G. // RNA Biol. 2017. V. 14. P. 1627–1637. https://doi.org/10.1080/15476286.2017.1342933
  91. Burenina O.Y., Elkina D.A., Migur A.Y., Oretskaya T.S., Evguenieva-Hackenberg E., Hartmann R.K., Kubareva E.A. // J. Microbiol. 2020. V. 58. P. 945–956. https://doi.org/10.1007/s12275-020-0283-1

Қосымша файлдар


© А.С. Карпов, Д.А. Елкина, Т.С. Орецкая, Е.А. Кубарева, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>