mRNA-Vaccine Platform: Features of Obtaining and Delivery of mRNA

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Vaccination is the most effective way to prevent infectious diseases. One new approach to vaccine development is mRNA-based vaccines, which have a number of very useful advantages over other types of vaccines. As the mRNA only encodes the target antigen, there is no potential risk of infection, as would be the case with an attenuated or inactivated pathogen. The principle of mRNA vaccines’ action is function in the cytosol of the cell; due to this the probability of mRNA integration into the host genome is extremely low. mRNA vaccines are able to induce specific cellular and humoral immune responses, but do not induce an anti-vector immune response. The mRNA vaccine platform makes it easy to replace the target gene without changing the production technology, which is important for solving the problem of a time gap between the start of an epidemic and vaccine production. The review focuses on the history of mRNA vaccines, the technology of their production, methods for increasing the stability of mRNA, description of modifications of the cap, poly(A) tail, coding and noncoding parts of mRNA, purification of the target mRNA vaccine from by-products, and various delivery methods.

Авторлар туралы

V. Litvinova

State Research Center of Virology and Biotechnology “Vector”

Хат алмасуға жауапты Автор.
Email: viktoriya_litvinova_1999@mail.ru
Russia, 630559, Novosibirskaya oblast, Koltsovo

A. Rudometov

State Research Center of Virology and Biotechnology “Vector”

Email: viktoriya_litvinova_1999@mail.ru
Russia, 630559, Novosibirskaya oblast, Koltsovo

L. Karpenko

State Research Center of Virology and Biotechnology “Vector”

Email: viktoriya_litvinova_1999@mail.ru
Russia, 630559, Novosibirskaya oblast, Koltsovo

A. Ilyichev

State Research Center of Virology and Biotechnology “Vector”

Email: viktoriya_litvinova_1999@mail.ru
Russia, 630559, Novosibirskaya oblast, Koltsovo

Әдебиет тізімі

  1. Pardi N., Hogan M.J., Porter F.W., Weissman D. // Nat. Rev. Drug Discov. 2018. V. 17. P. 261–279. https://doi.org/10.1038/nrd.2017.243
  2. Melton D.A., Krieg P.A., Rebagliati M.R., Maniatis T., Zinn K., Green M.R. // Nucleic Acids Res. 1984. V. 12. P. 7035–7056. https://doi.org/10.1093/nar/12.18.7035
  3. Wolff J.A., Malone R.W., Williams P., Chong W., Acsadi G., Jani A., Felgner P.L. // Science. 1990. V. 247. P. 1465–1468. https://doi.org/10.1126/science.1690918
  4. Jirikowski G.F., Sanna P.P., Maciejewski-Lenoir D., Bloom F.E. // Science. 1992. V. 255. P. 996–998. https://doi.org/10.1126/science.1546298
  5. Gómez-Aguado I., Rodríguez-Castejón J., Vicente-Pascual M., Rodríguez-Gascón A., Solinís M.Á., Pozo-Rodríguez A. // Nanomaterials. 2020. V. 10. P. 364. https://doi.org/10.3390/nano10020364
  6. Kwon H., Kim M., Seo Y., Moon Y.S., Lee H.J., Lee K., Lee H. // Biomaterials. 2018. V. 156. P. 172–193. https://doi.org/10.1016/j.biomaterials.2017.11.034
  7. Горяев А.А., Савкина М.В., Обухов Ю.И., Меркулов В.А., Олефир Ю.В. // БИОпрепараты. Профилактика, диагностика, лечение. 2019. Т. 19. С. 72–80. https://doi.org/10.30895/2221-996X-2019-19-2-72-80
  8. Hoerr I., Obst R., Rammensee H.-G., Jung G. // Eur. J. Immunol. 2000. V. 30. P. 1–7. https://doi.org/10.1002/1521-4141(200001)30:1<1: :AID-IMMU1>3.0.CO;2-%23
  9. Probst J., Weide B., Scheel B., Pichler B.J., Hoerr I., Rammensee H.-G., Pascolo S. // Gene Ther. 2007. V. 14. P. 1175–1180. https://doi.org/10.1038/sj.gt.3302964
  10. Kariko K., Kuo A., Barnathan E.S. // Gene Ther. 1999. V. 6. P. 1092–1100. https://doi.org/10.1038/sj.gt.3300930
  11. Karikó K., Ni H., Capodici J., Lamphier M., Weissman D. // J. Biol. Chem. 2004. V. 279. P. 12542–12550. https://doi.org/10.1074/jbc.M310175200
  12. Karikó K., Buckstein M., Ni H., Weissman D. // Immunity. 2005. V. 23. P. 165–175. https://doi.org/10.1016/j.immuni.2005.06.008
  13. Warren L., Manos P.D., Ahfeldt T., Loh Y.H., Li H., Ebina W., Mandal P.K., Smith Z.D., Meissner A., Daley G.Q., Brack A.S., Collins J.J., Cowan C., Schlaeger T.M., Rossi D.J. // Cell Stem Cell. 2010. V. 7. P. 618–630. https://doi.org/10.1016/j.stem.2010.08.012
  14. Moderna. Product Pipeline. https://www.modernatx.com/pipeline
  15. Dolgin E. // Nature. 2021. V. 597. P. 318–324. https://doi.org/10.1038/d41586-021-02483-w
  16. Corbett K.S., Edwards D.K., Leist S.R., Abiona O.M. // Nature. 2020. V. 586. P. 567–571. https://doi.org/10.1038/s41586-020-2622-0
  17. Vogel A.B., Kanevsky I., Che Y., Swanson K.A., Muik A. // Nature. 2021. V. 592. P. 283–289. https://doi.org/10.1038/s41586-021-03275-y
  18. Bitzer M., Armeanu S., Lauer U.M., Neubert W.J. // J. Gene Med. 2003. V. 5. P. 543–553. https://doi.org/10.1002/jgm.426
  19. Bloom K., van den Berg F., Arbuthnot P. // Gene Ther. 2021. V. 28. P. 117–129. https://doi.org/10.1038/s41434-020-00204-y
  20. Mu Z., Haynes B.F., Cain D.W. // Vaccines. 2021. V. 9. P. 134. https://doi.org/10.3390/vaccines9020134
  21. Melo M., Porter E., Zhang Y., Silva M., Li N., Dobosh B., Liguori A., Skog P., Landais E., Menis S., Sok D., Nemazee D., Schief W.R., Weiss R., Irvine D.J. // Mol. Ther. 2019. V. 27. P. 2080–2090. https://doi.org/10.1016/j.ymthe.2019.08.007
  22. Lundstrom K. // Viruses. 2021. V. 13. P. 317. https://doi.org/10.3390/v13020317
  23. Bulcha J.T., Wang Y., Ma H., Tai P.W.L., Gao G. // Sig. Transduct Target Ther. 2021. V. 6. P. 1–24. https://doi.org/10.1038/s41392-021-00487-6
  24. Ghosh S., Brown A.M., Jenkins C., Campbell K. // Appl. Biosaf. 2020. V. 25. P. 7–18. https://doi.org/10.1177/1535676019899502
  25. Youn H., Chung J.K. // Expert Opin. Biol. Ther. 2015. V. 15. P. 1337–1348. https://doi.org/10.1517/14712598.2015.1057563
  26. Ogino T., Green T.J. // Viruses. 2019. V. 11. P. 504. https://doi.org/10.3390/v11060504
  27. Ramanathan A., Robb G.B., Chan S.H. // Nucleic Acids Res. 2016. V. 44. P. 7511–7526. https://doi.org/10.1093/nar/gkw551
  28. Linares-Fernández S., Lacroix C., Exposito J.Y., Verrier B. // Trends Mol. Med. 2020. V. 26. P. 311–323. https://doi.org/10.1016/j.molmed.2019.10.002
  29. Henderson J.M., Ujita A., Hill E., Yousif-Rosales S., Smith C., Ko N., McReynolds T., Cabral C.R., Escamilla-Powers J.R., Houston M.E. // Curr. Protoc. 2021. V. 1. P. e39. https://doi.org/10.1002/cpz1.39
  30. Pasquinelli A.E., Dahlberg J.E., Lund E. // RNA. 1995. V. 1. P. 957–967.
  31. Stepinski J., Wandell C., Stolarski R., Darzynkiewicz E., Rhoads R.E. // RNA. 2001. V. 7. P. 1486–1495. https://doi.org/undefined
  32. Strenkowska M., Kowalska J., Lukaszewicz M., Zuberek J., Su W., Rhoads R.E., Darzynkiewicz E., Jemielity J. // New J. Chem. 2010. V. 34. P. 993–1007. https://doi.org/10.1039/b9nj00644c
  33. Sahin U., Muik A., Derhovanessian E., Vogler I., Kranz L.M. // Nature. 2020. V. 586. P. 594–599. https://doi.org/10.1038/s41586-020-2814-7
  34. Pascolo S. // Viruses. 2021. V. 13. P. 270. https://doi.org/10.3390/v13020270
  35. Chang H., Lim J., Ha M., Kim V.N. // Mol. Cell. 2014. V. 53. P. 1044–1052. https://doi.org/10.1016/j.molcel.2014.02.007
  36. Li B., Zhang X., Dong Y. // WIREs Nanomed. Nanobiotechnol. 2019. V. 11. P. e1530. https://doi.org/10.1002/wnan.1530
  37. Jalkanen A.L., Coleman S.J., Wilusz J. // Semin. Cell Dev. Biol. 2014. V. 34. P. 24–32. https://doi.org/10.1016/j.semcdb.2014.05.018
  38. Newbury S.F. // Biochem. Soc. Trans. 2006. V. 34. P. 30–34. https://doi.org/10.1042/bst20060030
  39. Klausner R.D., Rouault T.A., Harford J.B. // Cell. 1993. V. 72. P. 19–25. https://doi.org/10.1016/0092-8674(93)90046-S
  40. Linares-Fernández S., Moreno J., Lambert E. // Mol. Ther. Nucleic Acids. 2021. V. 26. P. 945–956. https://doi.org/10.1016/j.omtn.2021.10.007
  41. Al-Saif M., Khabar K.S.A. // Mol. Ther. 2012. V. 20. P. 954–959. https://doi.org/10.1038/mt.2012.29
  42. Mauro V.P., Chappell S.A. // Trends Mol. Med. 2014. V. 20. P. 604–613. https://doi.org/10.1016/j.molmed.2014.09.003
  43. Spencer P.S., Siller E., Anderson J.F., Barral J.M. // J. Mol. Biol. 2012. V. 422. P. 328–335. https://doi.org/10.1016/j.jmb.2012.06.010
  44. Xia X. // Vaccines. 2021. V. 9. P. 734. https://doi.org/10.3390/vaccines9070734
  45. Yamamoto A., Kormann M., Rosenecker J., Rudolph C. // Eur. J. Pharm. Biopharm. 2009. V. 71. P. 484–489. https://doi.org/10.1016/j.ejpb.2008.09.016
  46. Mu X., Greenwald E., Ahmad S., Hur S. // Nucleic Acids Res. 2018. V. 46. P. 5239–5249. https://doi.org/10.1093/nar/gky177
  47. Rauch S., Roth N., Schwendt K., Fotin-Mleczek M., Mueller S.O., Petsch B. // Vaccines. 2021. V. 6. P. 1–9. https://doi.org/10.1038/s41541-021-00311-w
  48. Gebre M.S., Rauch S., Roth N., Yu J., Chandrashekar A., Mercado N.B., He X., Liu J., McMahan K., Martinot A., Martinez D.R., Giffin V., Hope D., Patel S., Sellers D., Sanborn O., Barrett J., Liu X., Cole A.C., Pessaint L., Valentin D., Flinchbaugh Z., Yalley-Ogunro J., Muench J., Brown R., Cook A., Teow E., Andersen H., Lewis M.G., Boon A.C.M., Baric R.S., Mueller S.O., Petsch B., Barouch D.H. // Nature. 2022. V. 601. P. 410–414. https://doi.org/10.1038/s41586-021-04231-6
  49. CureVac. RNA – Revolution für das Leben. https://www.curevac.com/en/2021/06/16/curevac-provides-update-on-phase-2b-3-trial-of-first-generation-covid-19-vaccine-candidate-cvncov/
  50. Kariko K., Muramatsu H., Ludwig J., Weissman D. // Nucleic Acids Res. 2011. V. 39. P. e142. https://doi.org/10.1093/nar/gkr695
  51. Baiersdörfer M., Boros G., Muramatsu H., Mahiny A., Vlatkovic I., Sahin U., Karikó K. // Mol. Ther. Nucleic Acids. 2019. V. 15. P. 26–35. https://doi.org/10.1016/j.omtn.2019.02.018
  52. Li S., Ma Z. // Curr. Gene Ther. 2001. V. 1. P. 201–226. https://doi.org/10.2174/1566523013348814
  53. Guan S., Rosenecker J. // Gene Ther. 2017. V. 24. P. 133–143. https://doi.org/10.1038/gt.2017.5
  54. Reichmuth A.M., Oberli M.A., Jaklenec A., Langer R., Blankschtein D. // Ther. Deliv. 2016. V. 7. P. 319–334. https://doi.org/10.4155/tde-2016-0006
  55. Bahl K., Senn J.J., Yuzhakov O., Bulychev A., Brito L.A., Hassett K.J., Laska M.E., Smith M., Almarsson Ö., Thompson J., Ribeiro A., Watson M., Zaks T., Ciaramella G. // Mol. Ther. 2017. V. 25. P. 1316–1327. https://doi.org/10.1016/j.ymthe.2017.03.035
  56. Varkouhi A.K., Scholte M., Storm G., Haisma H.J. // J. Control. Release. 2011. V. 151. P. 220–228. https://doi.org/10.1016/j.jconrel.2010.11.004
  57. Gilleron J., Querbes W., Zeigerer A., Borodovsky A., Marsico G., Schubert U., Manygoats K., Seifert S., Andree C., Stöter M., Epstein-Barash H., Zhang L., Koteliansky V., Fitzgerald K., Fava E., Bickle M., Kalaidzidis Y., Akinc A., Maier M., Zerial M. // Nat. Biotechnol. 2013. V. 31. P. 638–646. https://doi.org/10.1038/nbt.2612
  58. Li M., Li Y., Li S., Jia L., Wang H., Li M., Deng J., Zhu A., Ma L., Li W., Yu P., Zhu T. // Eur. J. Med. Chem. 2022. V. 227. P. 113910. https://doi.org/10.1016/j.ejmech.2021.113910
  59. Schoenmaker L., Witzigmann D., Kulkarni J.A., Verbeked R., Kerstenae G., Jiskootae W., Crommelin D.J.A. // Int. J. Pharm. 2021. V. 601. P. 120586. https://doi.org/10.1016/j.ijpharm.2021.120586
  60. Chen G.L., Li X.F., Dai X.H., Li N., Cheng M.L., Huang Z. // The Lancet Microbe. 2022. V. 3. P. E193–E202. https://doi.org/10.1016/S2666-5247(21)00280-9
  61. Pardi N., Tuyishime S., Muramatsu H., Kariko K., Mui B.L., Tam Y.K., Madden T.D., Hope M.J., Weissman D. // J. Control. Release. 2015. V. 217. P. 345–351. https://doi.org/10.1016/j.jconrel.2015.08.007
  62. Yi Xue H., Guo P., Wen W.-C., Lun Wong H. // Curr. Pharm. Des. 2015. V. 21. P. 3140–3147. https://doi.org/10.2174/1381612821666150531164540
  63. Sedic M., Senn J.J., Lynn A., Laska M., Smith M., Platz S.J., Bolen J., Hoge S., Bulychev A., Jacquinet E., Bartlett V., Smith P.F. // Vet. Pathol. 2018. V. 55. P. 341–354. https://doi.org/10.1177/0300985817738095
  64. Hou X., Zaks T., Langer R., Dong Y. // Nat. Rev. Mater. 2021. V. 6. P. 1078–1094. https://doi.org/10.1038/s41578-021-00358-0
  65. Zhuang X., Qi Y., Wang M., Yu N., Nan F., Zhang H., Tian M., Li C., Lu H., Jin N. // Vaccines. 2020. V. 8. P. 123. https://doi.org/10.3390/vaccines8010123
  66. Chang H.I., Yeh M.K. // Int. J. Nanomed. 2012. V. 7. P. 49. https://doi.org/10.2147/IJN.S26766
  67. Ball R.L., Bajaj P., Whitehead K.A. // Int. J. Nanomed. 2017. V. 12. P. 305. https://doi.org/10.2147/IJN.S123062
  68. Dong Y., Dorkin J.R., Wang W., Chang P.H., Webber M.J., Tang B.C., Yang J., Abutbul-Ionita I., Danino D., DeRosa F., Heartlein M., Langer R., Anderson D.G. // Nano Lett. 2016. V. 16. P. 842–848. https://doi.org/10.1021/acs.nanolett.5b02428
  69. Kowalski P.S., Palmiero U.C., Huang Y., Rudra A., Langer R., Anderson D.G. // Adv. Mater. 2018. V. 30. P. 1801151. https://doi.org/10.1002/adma.201801151
  70. Mohammed M.A., Syeda J.T.M., Wasan K.M., Wasan E.K. // Pharmaceutics. 2017. V. 9. P. 53. https://doi.org/10.3390/pharmaceutics9040053
  71. Moura L.I.F., Malfanti A., Peres C., Matos A.I., Guegain E., Sainz V., Zloh M., Vicent M.J., Florindo H.F. // Mater. Horiz. 2019. V. 6. P. 1956–1973. https://doi.org/10.1039/c9mh00628a
  72. Chauhan A.S. // Molecules. 2018. V. 23. P. 938. https://doi.org/10.3390/molecules23040938
  73. Islam M.A., Xu Y., Tao W., Ubellacker J.M., Lim M. // Nat. Biomed. Eng. 2018. V. 2. P. 850–864. https://doi.org/10.1038/s41551-018-0284-0
  74. Borgoyakova M.B., Karpenko L.I., Rudometov A.P., Volosnikova E.A., Merkuleva I.A., Starostina E.V., Zadorozhny A.M., Isaeva A.A., Nesmeyanova V.S., Shanshin D.V., Baranov K.O., Volkova N.V., Zaitsev B.N., Orlova L.A., Zaykovskaya A.V., Pyankov O.V., Danilen-ko E.D., Bazhan S.I., Shcherbakov D.N., Taranin A.V., Ilyichev A.A. // Int. J. Mol. Sci. 2022. V. 23. P. 2188. https://doi.org/10.3390/ijms23042188
  75. Lebedev L.R., Karpenko L.I., Poryvaeva V.A., Azaev M.S., Ryabchikova E.I., Gileva I.P., Ilyichev A.A. // Mol. Biol. 2000. V. 34. P. 413–417. https://doi.org/10.1007/BF02759674
  76. Karpenko L.I., Bazhan S.I., Bogryantseva M.P., Ryndyuk N.N., Ginko Z.I., Kuzubov V.I., Lebedev L.R., Kaplina O.N., Reguzova A.Yu., Ryzhikov A.B., Usova S.V., Oreshkova S.F., Nechaeva E.A., Danilenko E.D., Ilyichev A.A. // Russ. J. Bioorg. Chem. 2016. V. 42. P. 170–182. https://doi.org/10.1134/S1068162016020060
  77. Singh D.V., Singh R., Sodhi S.P.S. // Vet. Res. Commun. 2005. V. 29. P. 421–430. https://doi.org/10.1007/s11259-005-1434-x
  78. Perepelytsya S., Uličný J., Laaksonen A., Mocci F. // Nucleic Acids Res. 2019. V. 47. P. 6084–6097. https://doi.org/10.1093/nar/gkz434
  79. Lightfoot H.L., Hall J. // Nucleic Acids Res. 2014. V. 42. P. 11275–11290. https://doi.org/10.1093/nar/gku837
  80. Karpenko L.I., Rudometov A.P., Sharabrin S.V., Shcherbakov D.N., Borgoyakova M.B., Bazhan S.I., Volosnikova E.A., Rudometova N.B., Orlova L.A., Pyshnaya I.A., Zaitsev B.N., Volkova N.V., Azaev M.Sh., Zaykovskaya A.V., Pyankov O.V., Ilyichev A.A. // Vaccines. 2021. V. 9. P. 76. https://doi.org/10.3390/vaccines9020076
  81. Ponsaerts P., Der Sar S.V., Van Tendeloo V.F.I., Jorens P.G., Berneman Z.N., Singh P.B. // Cloning Stem Cells. 2004. V. 6. P. 211–216. https://doi.org/10.1089/clo.2004.6.211
  82. Campillo-Davo D., De Laere M., Roex G., Versteven M., Flumens D., Berneman Z.N., Van Tendeloo V.F.I., Anguille S., Lion E. // Pharmaceutics. 2021. V. 13. P. 396. https://doi.org/10.3390/pharmaceutics13030396

© В.Р. Литвинова, А.П. Рудомётов, Л.И. Карпенко, А.А. Ильичёв, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>