A New Complex of the Glucose Phosphate Isomerase Ribozyme with the Enzyme Hexokinase in Yeast

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The existence of a previously unknown ribozyme with the catalytic function of glucose phosphate isomerase was shown. It catalyzes the interconversion of glucose 6-phosphate and fructose 6-phosphate. This ribozyme was found in baker’s yeast Saccharomyces cerevisiae and was isolated as a complex with the enzyme hexokinase. The complex was easily isolated on an immunoaffinity column with antibodies to hexokinase. The ribozyme consists of 41–42 nucleotides and has a molecular weight of about 14.15–14.5 kDa. Km and Vmax are accordingly 0.14 ± 0.02 mM and 14.0 ± 1.3 U/mg for glucose 6-phosphate and 0.2 ± 0.03 mM and 15.4 ± 1.4 U/mg for fructose 6-phosphate. These kinetic characteristics are approximately the same in the complex and for the free ribozyme. Hexokinase within the complex retains its catalytic activity.

About the authors

O. N. Solovjeva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: soloveva_o@list.ru
Russia, 119234, Moscow, Leninskie gory 1/40

References

  1. Cech T.R., Zaug A.J., Grabowski P.I. // Cell. 1981. V. 27. P. 487–496. https://doi.org/10.1016/0092-8674(81)90390-1
  2. Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R. // Cell. 1982. V. 31. P. 147–157. https://doi.org/10.1016/0092-8674(82)90414-7
  3. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. // Cell. 1983. V. 35. P. 849–857. https://doi.org/10.1016/0092-8674(83)90117-4
  4. Wilson T.J., Lilley D.M.J. // Wiley Interdiscip. Rev. RNA. 2021. V. 12. P. e1651. https://doi.org/10.1002/wrna.165
  5. Lilley D.M. // Phil. Trans. R. Soc. Lond. B. Biol. Sci. 2011. V. 366. P. 2910–2917. https://doi.org/10.1098/rstb.2011.0132
  6. Lilley D.M. // Biochem. Soc. Trans. 2011. V. 39. P. 641–646. https://doi.org/10.1042/BST0390641
  7. Wilson T.J., Lilley D.M. // RNA. V. 21. P. 534–537. https://doi.org/10.1261/rna.049874.115
  8. Müller S., Appel B., Balke D., Hieronymus R., Nübel C. // F1000Res. 2016. V. 5. P. 1511. https://doi.org/10.12688/f1000research.8601.1
  9. Kuznetsova S.A., Petrukov K.S., Pletnev F.I., Sergiev P.V., Dontsova O.A. // Biochemistry (Moscow). 2019. V. 84. P. 851–869. https://doi.org/10.1134/S0006297919080029
  10. Suga H., Cowan J.A., Szostak J.W. // Biochemistry. 1998. V. 37. P. 10118–10125. https://doi.org/10.1021/bi980432a
  11. DeRose V.J. // Chem. Biol. 2002. V. 9. P. 961–969. https://doi.org/10.1016/S1074-5521(02)00217-X
  12. Kingery D.A., Pfund E., Voorhees R.M., Okuda K., Wohlgemuth I., Kitchen D.E., Rodnina M.V., Strobel S.A. // Chem. Biol. 2008. V. 15. P. 493–500. https://doi.org/10.1016/j.chembiol.2008.04.005
  13. Wohlgemuth I., Brenner S., Beringer M., Rodnina M.V. // J. Biol. Chem. 2008. V. 283. P. 32229–32235. https://doi.org/10.1074/jbc.M805316200
  14. Kikovska E., Svard S.G., Kirsebom L.A. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 2062–2067. https://doi.org/10.1073/pnas.0607326104
  15. Marvin M.C., Engelke D.R. // J. Cell. Biochem. 2009. V. 108. P. 1244–1251. https://doi.org/10.1002/jcb.22367
  16. McCarthy T.J., Plog M.A., Floy S.A., Jansen J.A., Juliane K., Soukup J.K., Soukup G.A. // Chem. Biol. 2005. V. 12. P. 1221–1226. https://doi.org/10.1016/j.chembiol.2005.09.006
  17. Brooks K.M., Hampel K.J. // Biochemistry. 2011. V. 50. P. 2424–2433. https://doi.org/10.1021/bi101842u
  18. Bingaman J.L., Zhang S., Stevens D.R., Yennawar N.H., Hammes-Schiffer S., Bevilacqua P.C. // Chem. Biol. 2017. V. 13. P. 439–445. https://doi.org/10.1038/nchembio.2300
  19. Lohse P.A., Szostak J.W. // Nature. 1996. V. 381. P. 442–444. https://doi.org/10.1038/381442a0
  20. Travascio P., Bennet A.J., Wang D.Y., Sen D. // Chem. Biol. 1999. V. 6. P. 779–787. https://doi.org/10.1016/S1074-5521(99)80125-2
  21. Nieuwlandt D., West M., Cheng X., Kirshenheuter G., Eaton B.E. // ChemBioChem. 2003. V. 4. P. 651–654. https://doi.org/10.1002/cbic.200300610
  22. Cernak P., Sen D. // Nat. Chem. 2013. V. 5. P. 971–977. https://doi.org/10.1038/nchem.1777
  23. Tsukiji S., Pattnaik S.B., Suga H. // Nat. Struct. Biol. 2003. V. 10. P. 713–717. https://doi.org/10.1038/nsb964
  24. Corley M., Burns M.C., Yeo G.W. // Mol. Cell. 2020. V. 78. P. 9–29. https://doi.org/10.1016/j.molcel.2020.03.011
  25. Smith J.M., Sandow J.J., Webb A.I. // Biochem. Soc. Trans. 2021. V. 49. P. 393–403. https://doi.org/10.1042/BST20200688
  26. Ramanathan M., Porter D.F., Khavari P.A. // Nat. Methods. 2019. V. 16. P. 225–234. https://doi.org/10.1038/s41592-019-0330-1
  27. Tsukiji S., Pattnaik S.B., Suga H. // J. Am. Chem. Soc. 2004. V. 126. P. 5044–5045. https://doi.org/10.1021/ja0495213
  28. Fusz S., Eisenführ A., Srivatsan S.G., Heckel A., Famulok M. // Chem. Biol. 2005. V. 12. P. 941–950. https://doi.org/10.1021/ja0495213
  29. Fusz S., Srivatsan S.G., Ackermann D., Famulok M. // J. Org. Chem. 2008. V. 73. P. 5069–5077. https://doi.org/10.1021/jo800639p
  30. Curtis N.J., Jeffery C.J. // Biochem. Soc. Trans. 2021. V. 49. P. 1099–1108. https://doi.org/10.1042/BST20200664
  31. Gemmill D., D’souza S., Meier-Stephenson V., Patel T.R. // Biochem. Cell Biol. 2020. V. 98. P. 31–41. https://doi.org/10.1139/bcb-2019-0041
  32. Solovjeva O.N. // Open J. Anal. Bioanal. Chem. 2020. V. 4. P. 020–028. https://doi.org/10.17352/ojabc.000020
  33. Gancedo C., Flores C.L. // Microbiol. Mol. Biol. Rev. 2008. V. 72. P. 197–210. https://doi.org/10.1128/MMBR.00036-07
  34. Ahuatzi D., Riera A., Pela Ez.R., Herrero P., Moreno F. // J. Biol. Chem. 2007. V. 282. P. 4485–4493. https://doi.org/10.1074/jbc.M606854200
  35. Rodríguez-Saavedra C., Morgado-Martínez L.E., Burgos-Palacios A., King-Díaz B., López-Coria M., Sánchez-Nieto S. // Front. Mol. Biosci. 2021. V. 8. P. 701 975. https://doi.org/10.3389/fmolb.2021.701975
  36. Castello A., Hentze M.W., Preiss T. // Trends Endocrinol. Metab. 2015. V. 26. P. 746–757. https://doi.org/10.1016/j.tem.2015.09.012
  37. Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  38. Wilfinger W.W., Mackey K., Chomczynski P. // Biotechniques. 1997. V. 22. P. 474–481. https://doi.org/10.2144/97223st01
  39. Jacob L., Beecken V., Bartunik L.J., Rose M., Bartunik H.D. // J. Chromatogr. 1991. V. 587. P. 85–92. https://doi.org/10.1016/0021-9673(91)85201-p
  40. Rabinovitz M. // FEBS Lett. 1992. V. 302. P. 113–116. https://doi.org/10.1016/0014-5793(92)80418-G
  41. White M.R., Garcin E.D. // Wiley Interdiscip. Rev. RNA. 2016. V. 7. P. 53–70. https://doi.org/10.1002/wrna.1315
  42. Arutyunova E.I., Danshina P.V., Domnina L.V., Pleten A.P., Muronetz V.I. // Biochem. Biophys. Res. Commun. 2003. V. 307. P. 547–552. https://doi.org/10.1016/S0006-291X(03)01222-1
  43. Baranowska B., Baranowski T. // Mol. Cell Biochem. 1977. V. 16. P. 43–48. https://doi.org/10.1007/BF01769838
  44. Baranowska B., Baranowski T. // Mol. Cell Biochem. 1977. V. 17. P. 75–83. https://doi.org/10.1007/BF01743430
  45. Castello A., Hentze M.W., Preiss T. // Trends Endocrinol. Metab. 2015. V. 26. P. 746–757. https://doi.org/10.1016/j.tem.2015.09.012
  46. Schmidt E.E., Colowick S.P. // Arch. Biochem. Biophys. 1973. V. 158. P. 458–470. https://doi.org/10.1016/0003-9861(73)90537-7
  47. Salas M., Vinuela E., Sols A. // J. Biol. Chem. 1965. V. 240. P. 561–568. https://doi.org/10.1016/S0021-9258(17)45210-0
  48. Bessell E.M., Thomas P. // Biochem. J. 1973. V. 131. P. 77–82. https://doi.org/10.1042/bj1300020p
  49. Solovjeva O.N. // Biochemistry (Moscow). 2002. V. 67. P. 667–671. https://doi.org/10.1023/a:1016198321838
  50. Brückner J. // Biochem. J. 1955. V. 60. P. 200–205. https://doi.org/10.1042/bj0600200
  51. Barbas C.F., 3rd, Burton D.R., Scott J.K., Silverman G.J. // CSH Protoc. 2007. P. pdb.ip47. https://doi.org/10.1101/pdb.ip47
  52. Mansour T.E. // J. Biol. Chem. 1963. V. 238. P. 2285–2292. https://doi.org/10.1016/S0021-9258(19)67967-6
  53. Fromm H.J., Zewe V. // J. Biol. Chem. 1962. V. 237. P. 3027–3032. https://doi.org/10.1016/S0021-9258(18)50115-0
  54. Cech T.R. // Cold Spring Harb. Perspect. Biol. 2012. V. 4. P. a006742. https://doi.org/10.1101/cshperspect.a006742
  55. Robertson M.P., Joyce G.F. // Cold Spring Harb. Perspect. Biol. 2012. V. 4. P. a003608. https://doi.org/10.1101/cshperspect.a003608

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (50KB)
3.

Download (96KB)
4.

Download (50KB)
5.

Download (226KB)
6.

Download (125KB)

Copyright (c) 2023 О.Н. Соловьева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies