Dynamics of Storage Lipids during the Recovery of Partially Bleached Coral Sinularia heterospiculata

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Global warming is causing the loss of coral symbionts and their bleaching. Researches of coral recovery are very important for the conservation of coral reefs. The lipidomic approach can provide detailed information about the processes that take place in the coral during bleaching and recovery. Using supercritical fluid chromatography in combination with mass-spectrometry, the dynamics of the main classes of storage lipids triacylglycerols (TG) and monoalkyldiacylglycerols (MADAG) during the recovery of the octocoral Sinularia heterospiculata after heat stress (32°C). It was shown that MADAG plays an important role in the energy balance of S. heterospiculata after heat stress. Under stress, the coral S. heterospiculata primarily consumed saturated MADAG molecular species. Changes in the profile of TG molecular species occurred only on the 16th day of the experiment. Probable, the stressed octocoral S. heterospiculata changes its energy strategy during recovery; therefore, the qualitative composition of reserve lipids is rearranged during the recovery period.

Sobre autores

T. Sikorskaya

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Email: miss.tatyanna@yandex.ru
Russia, 690041, Vladivostok, ul. Palchevskogo 17

D. Solodiy

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University, Department of Biochemistry and Biotechnology

Email: miss.tatyanna@yandex.ru
Russia, 690041, Vladivostok, ul. Palchevskogo 17; Russia, 690922, Vladivostok, Ajaks 10

E. Maskin

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University, Department of Biochemistry and Biotechnology

Email: miss.tatyanna@yandex.ru
Russia, 690041, Vladivostok, ul. Palchevskogo 17; Russia, 690922, Vladivostok, Ajaks 10

Bibliografia

  1. Spalding M.D., Grenfell A.M. // Coral Reefs. 1997. V. 16. P. 225–230. https://doi.org/10.1007/s003380050078
  2. Fabricius K., Alderslade P. // Soft Corals and Sea Fans: a Comprehensive Guide to the Tropical Shallow Water Genera of the Central-West Pacific, the Indian Ocean and the Red Sea. Townsville, Australia: Australian Institute of Marine Science, 2001. P. 77–103.
  3. Rowley S.J., Robert T.E., Coleman R.R., Spalding H.L., Joseph E., Dorricott M.K.L. // Pohnpei, Federated States of Micronesia. In: Mesophotic Coral Ecosystems / Eds. Loya Y., Puglise K.A., Bridge T.C.L. Springer International Publishing, Cham, 2019. V. 12. P. 301–320. https://doi.org/10.1007/978-3-319-92735-0_17
  4. McLachlan R.H., Price J.T., Solomon S.L., Grottoli A.G. // Coral Reefs. 2020. V. 39. P. 885–902. https://doi.org/10.1007/s00338-020-01931-9
  5. Oliver T.A., Palumbi S.R. // Coral Reefs. 2011. V. 30. P. 429–440. https://doi.org/10.1007/s00338-011-0721-y
  6. Yamashiro H., Oku H., Higa H., Chinen I., Sakai K. // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999. V. 122. P. 397–407. https://doi.org/10.1016/S0305-0491%2899%2900014-0
  7. Imbs A.B., Dang L.P.T., Nguyen K.B. // PLoS One. 2019. V. 14. e0215759. https://doi.org/10.1371/journal.pone.0215759
  8. Hamoutene D., Puestow T., Miller-Banoub J., Wareham V. // Coral Reefs. 2008. V. 27. P. 237–246. https://doi.org/10.1007/s00338-007-0318-7
  9. Imbs A.B., Ermolenko E.V., Grigorchuk V.P., Dang L.T.P. // Coral Reefs. 2021. V. 40. P. 719–734. https://doi.org/10.1007/s00338-021-02073-2
  10. Sikorskaya T.V., Ermolenko E.V., Efimova K.V. // Coral Reefs. 2022. V. 41. P. 277–291. https://doi.org/10.1007/s00338-022-02222-1
  11. Imbs A.B. // Russ. J. Mar. Biol. 2013. V. 39. P. 153–168. https://doi.org/10.1134/s1063074013030061
  12. Yamashiro H., Oku H., Onaga K. // Fisheries Science. 2005. V. 71. P. 448–453. https://doi.org/10.1111/j.1444-2906.2005.00983.x
  13. Sikorskaya T.V., Ermolenko E.V., Imb, A.B. // J. Exp. Mar. Biol. Ecol. 2020. V. 524. 151295. https://doi.org/10.1016/j.jembe.2019.151295
  14. Imbs A.B. // Biochem. Syst. Ecol. 2014. V. 54. P. 213–218. https://doi.org/10.1016/j.bse.2014.01.016
  15. Imbs A.B., Latyshev N.A., Dautova T.N., Latypov Y.Y. // Mar. Ecol. Prog. Ser. 2010. V. 409. P. 65–75. https://doi.org/10.3354/meps08622
  16. Imbs A.B., Yakovleva I.M., Pham L.Q. // Fisheries Science. 2010. V. 76. P. 375–380. https://doi.org/10.1007/s12562-009-0213-y
  17. Joseph J.D. // Prog. Lipid Res. 1979. V. 18. P. 1–30. https://doi.org/10.1016/0163-7827(79)90002-X
  18. Sikorskaya T.V., Ermolenko E.V., Boroda A.V., Ginanova T.T. // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2021. V. 255. P. 110609. https://doi.org/10.1016/j.cbpb.2021.110609
  19. Grottoli A.G., Warner M.E., Levas S.J., Aschaffenburg M.D., Schoepf V., McGinley M., Baumann J., Matsui Y. // Global Change Biology. 2014. V. 20. P. 3823–3833. https://doi.org/10.1111/gcb.12658
  20. Folch J., Lees M., Sloane-Stanley G.A. // J. Biol. Chem. 1957. V. 226. P. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
  21. Byrdwell W.C. // Lipids. 2005. V. 40. P. 383–417. https://doi.org/10.1007/s11745-006-1398-9
  22. Sikorskaya T.V., Efimova K.V., Imbs A.B. // Phytochemistry. 2021. V. 181. 112579. https://doi.org/10.1016/j.phytochem.2020.112579

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (512KB)

Declaração de direitos autorais © Т.В. Сикорская, Д.Д. Солодий, Е.В. Маськин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies