Synthesis of Liposomes Conjugated with CpG Oligonucleotide and Loaded with a Set of T-Cell Epitopes of the SARS-CoV-2 Virus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The synthesis of lipid conjugate of immunostimulatory oligodeoxyribonucleotide CpG-ODN (PD-CpG-DOPE) is described. Liposomes loaded with a composition of T-cell epitopes of the SARS-CoV-2 virus (7 peptides) and carrying PD-CpG-DOPE conjugate in the membrane, including lyophilized liposomes suitable for long-term storage, were prepared. In vitro experiments on mouse peritoneal exudate cells showed a tendency to increase the immunogenicity of liposomes with peptides when PD-CpG-DOPE conjugate was introduced into the lipid bilayer, compared with the addition of the (commercial) phosphorothioate derivative of CpG-ODN in solution.

About the authors

D. S. Tretiakova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: elvod@lipids.ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

T. L. Azhikina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: elvod@lipids.ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

I. A. Boldyrev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: elvod@lipids.ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

E. V. Svirshchevskaya

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: elvod@lipids.ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

E. L. Vodovozova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: elvod@lipids.ibch.ru
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

References

  1. Apostolopoulos V., Bojarska J., Feehan J., Matsoukas J., Wolf W. // Front. Pharmacol. 2022. V. 13. P. 914467. https://doi.org/10.3389/fphar.2022.914467
  2. Di Natale C., La Manna S., De Benedictis I., Brandi P., Marasco D. // Front Pharmacol. 2020. V. 11. P. 578382. https://doi.org/10.3389/fphar.2020.578382
  3. Третьякова Д.С., Водовозова Е.Л. // Биол. мембраны. 2022. Т. 39. С. 85–106. [Tretiakova D.S., Vodovozova E.L. // Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2022. V. 16. P. 1–20.] https://doi.org/10.1134/s1990747822020076
  4. Nisini R., Poerio N., Mariotti S., De Santis F., Fraziano M. // Front. Immunol. 2018. V. 9. P. 155. https://doi.org/10.3389/fimmu.2018.00155
  5. Lee Y., Lee Y.S., Cho S.Y., Kwon H.J. // Adv. Protein Chem. Struct. Biol. 2015. V. 99. P. 75–97. https://doi.org/10.1016/bs.apcsb.2015.03.004
  6. Heuts J., Varypataki E.M., van der Maaden K., Romeijn S., Drijfhout J.W., van Scheltinga A.T., Ossendorp F., Jiskoot W. // Pharm. Res. 2018. V. 35. P. 207. https://doi.org/10.1007/s11095-018-2490-6
  7. Dhakal S., Cheng X., Salcido J., Renu S., Bondra K., Lakshmanappa Y.S., Misch C., Ghimire S., Feliciano-Ruiz N., Hogshead B., Krakowka S., Carson K., McDonough J., Lee C.W., Renukaradhya G.J. // Int. J. Nanomedicine. 2018. V. 13. P. 6699–6715. https://doi.org/10.2147/ijn.s178809
  8. Белявцев А.Н., Шастина Н.С., Куприянов В.В., Николаева Л.И., Мельникова М.В., Колесанова Е.Ф., Шимчишина М.Ю., Капустин И.В. // Биоорг. химия. 2022. Т. 48. С. 453–460. [Belyavtsev A.N., Shastina N.S., Kupriyanov V.V., Nikolaeva L.I., Melnikova M.V., Kolesanova E.F., Shimchishina M.Yu., Kapustin I.V. // Russ. J. Bioorg. Chem. 2022. V. 48. P. 621–627.] https://doi.org/10.1134/S1068162022030049
  9. Gayed P.M. // Yale J. Biol. Med. 2011. V. 84. P. 131–138.
  10. Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S. // Nature. 2000. V. 408. P. 740–745. https://doi.org/10.1038/35047123
  11. Hanagata N. // Int. J. Nanomedicine. 2012. V. 7. P. 2181–2195. https://doi.org/10.2147/ijn.s30197
  12. Nikoofal-Sahlabadi S., Riahi M.M., Sadri K., Badiee A., Nikpoor A.R., Jaafari M.R. // Eur. J. Pharm. Sci. 2018. V. 119. P. 159–170. https://doi.org/10.1016/j.ejps.2018.04.018
  13. Lahoud M.H., Ahmet F., Zhang J.G., Meuter S., Policheni A.N., Kitsoulis S., Lee C.N., O’Keeffe M., Sullivan L.C., Brooks A.G., Berry R., Rossjohn J., Mintern J.D., Vega-Ramos J., Villadangos J.A., Nicola N.A., Nussenzweig M.C., Stacey K.J., Shortman K., Heath W.R., Caminschi I. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 16270–16275. https://doi.org/10.1073/pnas.1208796109
  14. Ignacio B.J., Albin T.J., Esser-Kahn A.P., Verdoes M. // Bioconjug. Chem. 2018. V. 29. P. 587−603. https://doi.org/10.1021/acs.bioconjchem.7b00808
  15. Levenson E.A., Kiick K.L. // Acta Biomater. 2014. V. 10. P. 1134–1145. https://doi.org/10.1016/j.actbio.2013.11.022
  16. Clauson R.M., Berg B., Chertok B. // Bioconjug. Chem. 2019. V. 30. P. 561–567. https://doi.org/10.1021/acs.bioconjchem.9b00091
  17. Chatzikleanthous D., Schmidt S.T., Buffi G., Paciello I., Cunliffe R., Carboni F., Romano M.R., O’Hagan D.T., D’Oro U., Woods S., Roberts C.W., Perrie Y., Adamo R. // J. Control. Release. 2020. V. 323. P. 125–137. https://doi.org/10.1016/j.jconrel.2020.04.001
  18. Andrews C.D., Provoda C.J., Ott G., Lee K.D. // Bioconjug. Chem. 2011. V. 22. P. 1279–1286. https://doi.org/10.1021/bc100436y
  19. Lai C., Duan S., Ye F., Hou X., Li X., Zhao J., Yu X., Hu Z., Tang Z., Mo F., Yang X., Lu X. // Theranostics. 2018. V. 8. P. 1723–1739. https://doi.org/10.7150/thno.22056
  20. Третьякова Д.С., Алексеева А.С., Онищенко Н.Р., Болдырев И.А., Егорова Н.С., Васина Д.В., Гущин В.А., Чернов А.С., Телегин Г.Б., Казаков В.А., Плохих К.С., Коновалова М.В., Свирщевская Е.В., Водовозова Е.Л. // Биоорг. химия. 2023. Т. 49. С. 48–64. [Tretiakova D.S., Alekseeva A.S., Onishchenko N.R., Boldyrev I.A., Egorova N.S., Vasina D.V., Gushchin V.A., Chernov A.S., Telegin G.B., Kazakov V.A., Plokhikh K.S., Konovalova M.V., Svirshchevskaya E.V., Vodovozova E.L. // Russ. J. Bioorg. Chem. 2022. V. 48. Suppl. 1. P. S23–S37.] https://doi.org/10.1134/S1068162022060255
  21. Meng W., Yamazaki T., Nishida Y., Hanagata N. // BMC Biotechnol. 2011. V. 11. P. 88. https://doi.org/10.1186/1472-6750-11-88
  22. Mouritsen O.G., Jørgensen K. // Chem. Phys. Lipids. 1994. V. 73. P. 3–25. https://doi.org/10.1016/0009-3084(94)90171-6
  23. Mansourian M., Badiee A., Jalali S.A., Shariat S., Yazdani M., Amin M., Jaafari M.R. // Immunol. Lett. 2014. V. 162. P. 87–93. https://doi.org/10.1016/j.imlet.2014.07.008
  24. Schmidt S.T., Foged C., Korsholm K.S., Rades T., Christensen D. // Pharmaceutics. 2016. V. 8. P. 7. https://doi.org/10.3390/pharmaceutics8010007
  25. Engler O.B., Schwendener R.A., Dai W.J., Wolk B., Pichler W., Moradpour D., Brunner T., Cerny A. // Vaccine. 2004. V. 23. P. 58–68. https://doi.org/10.1016/j.vaccine.2004.05.009
  26. Kryukova E.V., Egorova N.S., Kudryavtsev D.S., Lebedev D.S., Spirova E.N., Zhmak M.N., Garifulina A.I., Kasheverov I.E., Utkin Y.N., Tsetlin V.I. // Front. Pharmacol. 2019. V. 10. P. 748. https://doi.org/10.3389/fphar.2019.00748
  27. Magano J., Conway B.G., Farrand D., Lovdahl M., Maloney M.T., Pozzo M.J., Teixeira J.J., Rizzo J., Tumelty D. // Synthesis. 2014. V. 46. P. 1399–1406. https://doi.org/10.1055/s-0033-1340980
  28. Germann M.W. // Nucleic Acids NMR Spectroscopy. Departments of Chemistry and Biology, Georgia State University, 2014. http://tesla.ccrc.uga.edu/courses/BioNMR2014/lectures/pdfs/NMR_14_mwgL1.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (119KB)

Copyright (c) 2023 Д.С. Третьякова, Т.Л. Ажикина, И.А. Болдырев, Е.В. Свирщевская, Е.Л. Водовозова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies