Dynamics of 24 Self-Assembling H-(RADA)4-OH Peptides Complexed in Bi-Layered Structure with Layers in syn and anti Orientation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

H-(RADA)4-OH peptide in water tends to form biolgels at physiological conditions. Thusly made scaffold is formed of fibrils resulted from peptides self-assembling. Fibrils have two external hydrophilic layers, while hydrophobic one is situated between of them. Bio gels by the H-(RADA)4-OH peptides are considered to be a prominent source for designed extra cellular matrix aimed to cell cultures of different types. Little is known about detailed structure the filament structure and β-sheets peptide composition. We have designed and studied molecular dynamics of bi-layered protofilament structures with β-sheets formed of parallel or anti-parallel peptide chains. Method of molecular dynamics was used to study H-(RADA)4-OH peptide complexes at 80 and 300 K. While the most stable peptide complex was found to consist of anti-parallel peptides, had the lowest free energy and the least deviation of atom coordinates, yet another stable structure of the peptide complex was identified as 24-mer of parallel peptides with two β-sheets placed in syn orientation. These results underlined the importance of factors, directing the initial stages of the H-(RADA)4-OH peptide self-assembling in solution.

About the authors

A. V. Danilkovich

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Author for correspondence.
Email: danilkovich@bibch.ru
Russia, 142290, Pushchino, prosp. Nauki 6

D. A. Tikhonov

Institute of Mathematical Problems of Biology – the Branch of Keldysh Institute of Applied Mathematics,
Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: danilkovich@bibch.ru
Russia, 142290, Pushchino, ul. Vitkevicha 1; Russia, 142290, Pushchino, ul. Institutskaya 3

V. M. Lipkin

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: danilkovich@bibch.ru
Russia, 142290, Pushchino, prosp. Nauki 6

References

  1. Ovchinnikov Yu.A., Ivanov V.T. // In: The Proteins. 3rd edition / Eds. Neurath H., Hill R.L. New York: Acad. Press, 1982. V. 5. P. 307–642. https://doi.org/10.1016/0161-5890(84)90081-6
  2. Collier J.H., Rudra J.S., Gasiorowski J.Z., Jung J.P. // Chem. Soc. Rev. 2010. V. 39. P. 3413–3424. https://doi.org/10.1039/b914337h
  3. Seyedkarimi M.S., Mirzadeh H., Bagheri-Khoulenjani S. // J. Biomed. Mat. Res. Part A. 2019. V. 107. P. 330–338. https://doi.org/10.1002/jbm.a.36495
  4. Zhang S.G., Holmes T.C., Dipersio C.M., Hynes R.O., Su X., Rich A. // Biomaterials. 1995. V. 16. P. 1385–1393. https://doi.org/10.1016/0142-9612(95)96874-y
  5. Kumada Y., Zhang S. // PLoS One. 2010. V. 5. P. e10305. https://doi.org/10.1371/journal.pone.0010305
  6. Naotaro Akiyama N., Yamamoto-Fukuda T., Takahashi H., Koji T. // Int. J. Nanomed. 2013. V. 8. P. 2629–2640. https://doi.org/10.2147/IJN.S47279
  7. Zhang S.G., Lockshin C., Herbert A., Winter E., Rich A. // EMBO J. 1992. V. 11. P. 3787–3796. https://doi.org/10.1002/j.1460-2075.1992.tb05464.x
  8. Данилкович А.В., Липкин В.М., Удовиченко И.П. // Биоорг. химия. 2011. Т. 37. С. 780–785. [Danilkovich A.V., Lipkin V.M., Udovichenko, I.P. // Russ. J. Bioorg. Chem. 2011. V. 37. P. 707–712.] https://doi.org/10.1134/S1068162011060069
  9. Pauling L., Corey R.B. // Proc. Natl. Acad. Sci. USA. 1951. V. 37. P. 251–256. https://doi.org/10.1073/pnas.37.5.251
  10. Zhang S., Holmes T., Lockshin C., Rich A. // Proc. Natl. Acad. Sci. USA.1993. V. 90. P. 3334–3338. https://doi.org/10.1073/pnas.90.8.3334
  11. Zarei H., Aramvash A., Seyedkarimi M.S. // Int. J. Peptide Res. Therapeutics. 2019. V. 25. P. 265–272. https://doi.org/10.1007/s10989-017-9669-2
  12. Altman M., Lee P., Rich A., Zhang S.G. // Protein Sci. 2000. V. 9. P. 1095–1105. https://doi.org/10.1110/ps.9.6.1095
  13. Marcotte E.M., Pellegrini M., Yeates T.O., Eisenberg D.A. // J. Mol. Biol. 1999. V. 293. P. 151–160. https://doi.org/10.1006/jmbi.1999.3136
  14. Chen Y.W., Ding F., Nie H.F., Serohijos A.W., Sharma S., Wilcox K.C., Yin Y.S., Dokholyan N.V. // Arch. Biochem. Biophys. 2008. V. 469. P. 4–19. https://doi.org/10.1016/j.abb.2007.05.014
  15. Данилкович А.В., Тихонов Д.А. // Препринты ИПМ им. М.В.Келдыша. 2019. № 72. 24 с. https://doi.org/10.20948/prepr-2019-72
  16. Danilkovich A.V., Sobolev E.V., Tikhonov D.A., Udovichenko I.P., Lipkin V.M. // Dokl. Biochem. Biophys. 2012. V. 443. P. 96–99. https://doi.org/10.1134/S160767291202010X
  17. Simmerling C., Wang B., Woods R.J. // J. Computation. Chem. 2005. V. 26. P. 1668–1688. https://doi.org/10.1002/jcc.20290
  18. Yokoi H., Kinoshita T., Zhang S. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 8414–8419. https://doi.org/10.1073/pnas.0407843102
  19. Zhang S., Lockshin C., Cook R., Rich A. // Biopolymers. 1994. V. 34. P. 663–672. https://doi.org/10.1002/bip.360340508
  20. Cormier A.R., Pang X., Zimmerman M.I., Zhou H.-X., Paravastu A.K. // ACS Nano. 2013. V. 7. P. 7562–7572. https://doi.org/10.1021/nn401562f
  21. Huang D., Zimmerman M.I., Martin P.K., Nix A.J., Rosenberry T.L., Paravastu A.K. // J. Mol. Biol. 2015. V. 427. P. 2319–2328. https://doi.org/10.1016/j.jmb.2015.04.004
  22. HyperChem® Computational Chemistry. Practical Guide – Theory and Method, HC 70-00-04-00. Gainesville: Hypercube Inc., 2002. 350 p.
  23. Macindoe G., Mavridis L., Venkatraman V., Devignes M.-D., Ritchie D.W. // Nucleic Acids Res. 2010. V. 38. P. 445–449. https://doi.org/10.1093/nar/gkq311
  24. Tovchigrechko A., Vakser I. // Proteins. 2005. V. 60. P. 296–301. https://doi.org/10.1002/prot.20573
  25. VanGunsteren W.F., Billeter S.R., Eising A.A., Hunenberger P.H., Kruger P., Mark A.E., Scott W.R.P., Tironi I.G. // Biomol. Simulation. Zurich: Vdf Hochschulverlag AG an der ETH Zurich, 1996. P. 1042.
  26. Duan Y., Wu C., Chowdhury S., Lee M.C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. // J. Computation. Chem. 2003. V. 24. P. 1999–2012. https://doi.org/10.1002/jcc.10349
  27. Danilkovich A.V., Sobolev E.V., Tikhonov D.A., Shadrina T.E., Udovichenko I.P. // Math. Biol. Bioinform. 2011. V. 6. P. 92–101. https://doi.org/10.17537/2011.6.92
  28. Humphrey W., Dalke A., Schulten K. // J. Mol. Graphics. 1996. V. 14. P. 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  29. Onufriev A., Bashford D., Case D. // J. Phys. Chem. Part B. 2000. V. 104. P. 3712–3720. https://doi.org/10.1021/jp994072s
  30. Kabsch W., Sander C. // Biopolymers. 1983. V. 12. P. 2577–2637. https://doi.org/10.1002/bip.360221211

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (1MB)
4.

Download (39KB)
5.

Download (57KB)
6.

Download (55KB)
7.

Download (1MB)
8.

Download (528KB)
9.

Download (94KB)
10.

Download (674KB)
11.

Download (405KB)

Copyright (c) 2023 А.В. Данилкович, Д.А. Тихонов, В.М. Липкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies