Современные подходы к объективизации депрессивных расстройств у военнослужащих (обзор литературы)

Обложка

Цитировать

Полный текст

Аннотация

Введение. Группа расстройств депрессивного спектра (РДС) занимает лидирующее положение в структуре психических заболеваний военнослужащих многих стран. Однако до сих пор не существует четких и однозначных критериев диагностики депрессивного расстройства. Основным методом диагностики депрессивных расстройств является клиникопсихопатологический метод, субъективность которого нередко результирует в диагностические ошибки, что обосновывает необходимость поиска объективных маркеров РДС.

Цель – на основе анализа научных работ, посвященных проблемам диагностики депрессивных расстройств, с использованием поисковых систем, определить перспективные направления для объективизации данной патологии и разработки методик, целесообразных для использования в рамках медико-психологического сопровождения на различных этапах военной службы.

Материал и методы. Проведен анализ более 50 научных работ, содержащих научно обоснованные данные о диагностике депрессивных расстройств. Поиск проводился с использованием поисковых систем, таких как PubMed и eLIBRARY, по ключевым словам.

Результаты и их анализ. Генетические факторы играют важную роль в развитии депрессивных расстройств, но формирование депрессивных состояний обусловлено комплексом генетических факторов. Нейровизуализационные и биохимические маркеры, наряду с высокой стоимостью, характеризуются тем недостатком, что позволяют выявить преимущественно групповые различия. Психофизиологические корреляты позволяют только косвенно оценить особенности функционирования центральной нервной системы, а информационные технологии и искусственный интеллект не могут полноценно заменить традиционные методы клинико-патологической диагностики. В то же время проект RDoC представляет собой новый подход к объективизации психических расстройств. RDoC изучает психические расстройства на разных уровнях, что позволяет проводить более точную диагностику и определять цели терапии.

Заключение. Использование высокотехнологичных методов диагностики за счет указанных выше недостатков мало целесообразно для массовых обследований в условиях военной службы. Наиболее перспективным подходом к объективизации РДС является использование нейропсихологических тестов.

Об авторах

Ван Чан Данг

Военно-медицинская академия им. С.М. Кирова; Военный госпиталь № 175

Email: vanchandang@gmail.com
ORCID iD: 0009-0001-2607-1072

адъюнкт, каф. психиатрии, врач-психиатр

Россия, Санкт-Петербург, ул. Акад. Лебедева, д. 6; г. Хошимин, р. Го Вап, ул. Нгуен Кьем, д. 786, Социалистическая Республика Вьетнам

Андрей Александрович Марченко

Военно-медицинская академия им. С.М. Кирова

Автор, ответственный за переписку.
Email: andrew.marchenko@mail.ru
ORCID iD: 0000-0002-2906-5946

д-р мед. наук, проф., каф. психиатрии

Россия, Санкт-Петербург, ул. Акад. Лебедева, д. 6

Александр Васильевич Лобачев

Военно-медицинская академия им. С.М. Кирова

Email: doctor.lobachev@gmail.com
ORCID iD: 0000-0001-9082-107X

д-р мед. наук, доц., каф. психиатрии

Россия, Санкт-Петербург, ул. Акад. Лебедева, д. 6

Список литературы

  1. Беляев Р.В., Колесов В.В. Анализ траектории микродвижений глаз методом фрактальной дисперсии // Седьмая международная конференция по когнитивной науке: тез. докл. Светлогорск, 2016. С. 145.
  2. Гурович И.Я., Узбеков М.Г. К пониманию биомаркеров психических // Соц. и клин. психиатр. 2015. Т. 25, № 3. С. 80–83.
  3. Левада О.А. Нейробиология депрессии: от анатомо-функциональных до молекулярных механизмов // Архів психіатрії. 2015. № 1 (80). С. 76–82.
  4. Лобачев А.В., Никольская С.А., Корнилова А.А. Айтрекинг в диагностике психических расстройств // Вестн. психотерапии. 2017. № 61 (66). С. 98–112.
  5. Платонкина Т.В., Боговин Л.В., Наумов Д.Е., Овсянкин А.И. Генетические исследования депрессивных расстройств: обзор литературы // Бюл. физиологии и патол. дыхания. 2018. Т. 68. С. 96–106. doi: 10.12737/article_5b19ee7411be17.38016141
  6. Рафикова Е.И., Рысков А.П., Васильев В.А. Генетика депрессивных расстройств: кандидатные гены и полногеномный поиск ассоциаций // Генетика. 2020. Т. 56, № 8. С. 878–892. DOI: 10.31857/ S0016675820080111
  7. Шалагинова И.Г., Ваколюк И.А. Параметры произвольных саккад у пациентов с тревожными расстройствами // Айтрекинг в психологической науке и практике: кол. монография. М., 2015. С. 380–388.
  8. Шамрей В.К., Железняк И.С., Тарумов Д.А. [и др.]. Нейровизуализация в диагностике депрессивных и аддиктивных расстройств// Психиатрия. 2017. № 75. С. 31–38. doi: 10.30629/2618-6667-2017-75-31-38
  9. Шамрей В.К., Курасов Е.С., Зобин Я.С., Цыган Н.В. Возможности применения лабораторных биомаркеров для объективной диагностики депрессивных расстройств // Неврология, нейропсихиатрия, психосоматика. 2021. Т. 13, № 2. С. 34–39. doi: 10.14412/2074-2711-2021-2-34-39
  10. Шамрей В.К., Марченко А.А., Курасов Е.С. Современные подходы к объективизации диагностики психических расстройств // Вестн. Рос. воен.-мед. акад. 2018. № 4. С. 38–44.
  11. Abbar M., Courtet P., Bellivier F. [et al.]. Suicide Attempts and the Tryptophan Hydroxylase Gene. Molecular Psychiatry. 2001; 6(3): 268–273. doi: 10.1038/sj.mp.4000846
  12. Adam E.K., Doane L.D., Zinbarg R.E. [et al.]. Prospective Prediction of Major Depressive Disorder from Cortisol Awakening Responses in Adolescence. Psychoneuroendocrinology. 2010; 35(6): 921–931. doi: 10.1016/j.psyneuen.2009.12.007
  13. Aker M., Bш R., Harmer C. [et al.]. Inhibition and Response to Error in Remitted Major Depression. Psychiatry Research. 2016; 235: 116–122. doi: 10.1016/j.psychres.2015.11.038
  14. Akhapkin R.V., Volel B.A., Shishorin R.M. [et al.]. Recognition of Facial Emotion Expressions in Patients with Depressive Disorders: A Prospective, Observational Study. Neurology and Therapy. 2021; 10(1): 225–234. doi: 10.1007/s40120-021-00231-w
  15. Armstrong T., Bilsky S.A., Zhao V. [et al.]. Dwelling on Potential Threat Cues: An Eye Movement Marker for Combat-related PTSD. Depress Anxiety. 2013; 30(5): 497–502. doi: 10.1002/da.22115
  16. Benning S.D., Ait Oumeziane B. Reduced Positive Emotion and Underarousal Are Uniquely Associated with Subclinical Depression Symptoms: Evidence from Psychophysiology, Self-report, and Symptom. Psychophysiology. 2017; 54(7): 1010–1030. doi: 10.1111/psyp.12853
  17. Caspi A., Sugden K. , Moffitt T.E. [et al.]. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT gene. Science. 2003; 301(5631): 386–389. doi: 10.1126/science.1083968
  18. Cuthbert B.N. The RDoC Framework: Facilitating Transition from ICD/DSM to Dimensional Approaches that Integrate Neuroscience and Psychopathology. World Psychiatry. 2014; 13(1): 28–35. doi: 10.1002/wps.20087
  19. Ebneabbasi A., Mahdipour M., Nejati V. [et al.]. Emotion Processing and Regulation in Major Depressive Disorder: A 7T Resting-state fMRI Study. Human Brain Mapping. 2021: 42(3): 797–810. doi: 10.1002/hbm.25263
  20. Evans-Lacko S., Aguilar-Gaxiola S., Al-Hamzawi A. [et al.]. Socio-economic Variations in the Mental Health Treatment Gap for People with Anxiety, Mood, and Substance Use Disorders: Results from the WHO World Mental Health (WMH) Surveys. Psychological Medicine. 2018; 48(9): 1560–1571.
  21. Gonda X., Fountoulakis K.N., Juhasz G. [et al.]. Association of the S Allele of the 5-HTTLPR with Neuroticism-related Traits and Temperaments in a Psychiatrically Healthy. European Archives of Psychiatry and Clinical Neuroscience. 2009; 259(2): 106–113. doi: 10.1007/s00406-008-0842-7
  22. Gros A., Bensamoun D., Manera V. [et al.]. Recommendations for the Use of ICT in Elderly Populations with Affective Disorders. Frontiers in Aging Neuroscience. 2016; 8: 269. doi: 10.3389/fnagi.2016.00269
  23. Isaac L., Vrijsen J.N., Rinck M. [et al.]. Shorter Gaze Duration for Happy Faces in Current but not Remitted Depression: Evidence from Eye Movements. Psychiatry Research. 2014; 218(1–2): 79–86. doi: 10.1016/j.psychres.2014.04.002
  24. Jossou T., Medenou D., Et-tahir A. [et al.]. A Review about Technology in Mental Health Sensing and Assessment. ITM Web of Conferences. EDP Sciences. 2022: 01005. doi: 10.1051/itmconf/20224601005
  25. Koch C., Wilhelm M., Salzmann S. [et al.]. A Meta-analysis of Heart Rate Variability in Major Depression. Psychological Medicine. 2019; 49(12): 1948–1957. doi: 10.1017/S0033291719001351
  26. Koenig J., Kemp A.H., Beauchaine T.P. [et al.]. Depression and Resting State Heart Rate Variability in Children and Adolescents — A Systematic Review and Meta-analysis. Clinical Psychology Review. 2016; 46: 136–150. doi: 10.1016/j.cpr.2016.04.013
  27. Kцhler C.A., Freitas T.H., Stubbs B. [et al.]. Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis. Molecular neurobiology. 2018; 55: 4195–4206. doi: 10.1007/s12035-017-0632-1
  28. Lang R.J., Frith C.D. Learning and Reminiscence in the Pursuit Rotor Performance of Normal and Depressed Subjects. Personality and Individual Differences. 1981; 2(3): 207–213. doi: 10.1002/hbm.20605
  29. Lemoult J.J., Lemoult J., YoonK.L., Joormann J. Affective Priming in Major Depressive Disorder. Frontiers in Integrative Neuroscience. 2012; 6: 76. doi: 10.3389/fnint.2012.00076
  30. Lin Y.M., Davamani F., Yang W.C. [et al.]. Association Analysis of Monoamine Oxidase A Gene and Bipolar Affective Disorder in Han Chinese. Behavioral and Brain Functions. 2008; 4: 1–6. doi: 10.1186/1744-9081-4-21
  31. Lou Y., Lei Y., Mei Y. [et al.]. Review of Abnormal Self-Knowledge in Major Depressive Disorder. Frontiers in Psychiatry. 2019; 10: 130. doi: 10.3389/fpsyt.2019.00130
  32. Medical Surveillance Monthly Report / Armed Forces Health Surveillance Center. 2013; 20(4): 32.
  33. Must A., Horvath S., Nemeth V.L., Janka Z. The Iowa Gambling Task in Depression – What Have We Learned About Sub-optimal Decision-making Strategies? Frontiers in Psychology. 2013; 4: 732. doi: 10.3389/fpsyg.2013.00732
  34. Nikolin S., Tan Y.Y., Schwaab A. An Investigation of Working Memory Deficits in Depression Using the N-back Task: A Systematic Review and Meta-analysis. Journal of Affective Disorders. 2021; 284: 1–8. DOI: 10.1016/j. jad.2021.01.084
  35. Omichi C., Kadotani H., Sumi Y. [et al.]. Prolonged Sleep Latency and Reduced REM Latency Are Associated with Depressive Symptoms in a Japanese Working. International Journal of Environmental Research and Public Health. 2022; 19(4): 2112. doi: 10.3390/ijerph19042112
  36. Osimo E.F., Stochl J., Zammit S. [et al.]. Longitudinal Population Subgroups of CRP and Risk of Depression in the ALSPAC Birth Cohort. Comprehensive Psychiatry. 2020; 96: 152143. doi: 10.1016/j.comppsych.2019.152143
  37. Ptбиek R., Kuћelovб H., Stefano G. Dopamine D4 Receptor Gene DRD4 and its Association with Psychiatric Disorders. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2011; 17(9): 215–220. doi: 10.12659/MSM.881925
  38. Raison C.L., Miller A.H. Is Depression an Inflammatory Disorder? Current Psychiatry Reports. 2011; 13(6): 467–475. doi: 10.1007/s11920-011-0232-0
  39. Sarchiapone M., Gramaglia C., Losue M. [et al.]. The Association Between Electrodermal Activity (EDA), Depression and Suicidal Behaviour: A Systematic Review and Narrative. BMC Psychiatry. 2018; 18(1): 1–27. DOI: 10.1186/ s12888-017-1551-4
  40. Slavutskaya M.V., Kirenskaya A.V., Novototskii-Vlasov V.Yu. [et al.]. Slow Cortical Potentials Preceeding Visual Guided saccades in Schizophrenics. Human Physiology. 2005; 31: 545–553.
  41. Thorell L.H., Wolfersdorf W., Straub R. [et al.]. Electrodermal Hyporeactivity as a Trait Marker for Suicidal Propensity in Uniand Bipolar Depression. Journal of Psychiatric Research. 2013; 47(12): 1925–1931. DOI: 10.1016/j. jpsychires.2013.08.017
  42. Treadway M.T., Buckholtz J.W., Schwartzman A.N. [et al.]. Worth the ‘EEfRT’? The Effort Expenditure for Rewards Task as an Objective Measure of Motivation and Anhedonia. PLoS One. 2009; 4(8): e6598. doi: 10.1371/journal. pone.0006598
  43. UK Armed Forces Mental Health: Annual Summary & Trends Over Time. Ministry of Defence. 2014. 2007/082013/14. 58 p.
  44. Vaidyanathan U., Welo E.J., Malone S.M. [et al.]. The Effects of Recurrent Episodes of Depression on Startle Responses. Psychophysiology. 2014; 51(1): 103–109. doi: 10.1111/psyp.12152
  45. Valkanova V., Ebmeier K.P., Allan C.L. CRP, IL-6 and Depression: A Systematic Review and Meta-analysis of Longitudinal Studies. Journal of Affective Disorders. 2013; 150(3): 736–744. doi: 10.1016/j.jad.2013.06.004
  46. Yao L., Pan L., Qian M. [et al.]. Tumor Necrosis Factor-б Variations in Patients With Major Depressive Disorder Before and After Antidepressant Treatment. Frontiers in Psychiatry. 2020; 11: 518837. doi: 10.3389/fpsyt.2020.518837
  47. Yoshida K., Takahashi H., Higuchi H. [et al.]. Prediction of Antidepressant Response to Milnacipran by Norepinephrine Transporter Gene Polymorphisms. American Journal of Psychiatry. 2004; 161(9): 1575–1580. doi: 10.1176/appi.ajp.161.9.1575
  48. Youssef M.M., Underwood M.D., Huang Y.Y. [et al.]. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels With Major Depression and Suicide. International Journal of Neuropsychopharmacology. 2018; 21(6): 528–538. doi: 10.1093/ijnp/pyy008
  49. Zhang X., Gainetdinov R.R., Beaulieu J.M. [et al.]. Loss-of-function Mutation in Tryptophan Hydroxylase-2 Identified in Unipolar Major Depression. Neuron. 2005; 45(1): 11–16. doi: 10.1016/j.neuron.2004.12.014
  50. Zhou D., Luo J., Silenzio V. [et al.]. Tackling Mental Health by Integrating Unobtrusive Multimodal Sensing. Proceedings of the AAAI Conference on Artificial Intelligence. 2015: 1401–1408. doi: 10.1609/aaai.v29i1.9381

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».