Repeatability of Body Fat and Fat-Free Mass Measurements by Bioimpedance and Ultrasound Scanning Analysis in the Group of Young Adults

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Repeatability of the body fat and fat-free mass measurements obtained by two indirect methods (bioimpedance – BIA and ultrasound scanning analysis – US) was performed in the group of young adults. To evaluate repeatability, the repeated body composition measurements by the bioimpedance analyzer ABC-02 “Medas” and the ultrasound scanner BodyMetrixTM were done in the group of adult males and females. The performed study indicates accuracy of the estimates in the individuals and in the group at all as well as high repeatability of measurements obtained by BIA and US. Positive significant correlation between the body composition measurements obtained by the bioimpedance analyzer ABC-02 “Medas” and the ultrasound scanner BodyMetrixTM as well as between repeated measurements was found. The study indicates high repeatability of body fat and fat-free mass measurements obtained by the bioimpedance analyzer ABC-02 “Medas” and the ultrasound scanner BodyMetrixTM in the group of young adult males and females. Particularly, the highest repeatability was for the fat-free mass measurements.

作者简介

E. Bondareva

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency

编辑信件的主要联系方式.
Email: Bondareva.E@gmail.com
Russia, Moscow

O. Parfenteva

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency; Lomonosov Moscow State University

Email: Bondareva.E@gmail.com
Russia, Moscow; Russia, Moscow

A. Vasileva

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency; Lomonosov Moscow State University

Email: Bondareva.E@gmail.com
Russia, Moscow; Russia, Moscow

N. Kulemin

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency

Email: Bondareva.E@gmail.com
Russia, Moscow

E. Popova

Gorno-Altaisk State University

Email: Bondareva.E@gmail.com
Russia, Gorno-Altaisk

A. Gadzhiakhmedova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency; First Moscow State Medical University

Email: Bondareva.E@gmail.com
Russia, Moscow; Russia, Moscow

O. Kovaleva

First Moscow State Medical University

Email: Bondareva.E@gmail.com
Russia, Moscow

N. Khromov-Borisov

Almazov National Medical Research Centre

Email: Bondareva.E@gmail.com
Russia, St. Petersburg

参考

  1. Price K.L., Earthman C.P. Update on body composition tools in clinical settings: computed tomography, ultrasound, and bioimpedance applications for assessment and monitoring // Eur. J. Clin. Nutr. 2019. V. 73. № 2. P. 187.
  2. Соболева Н.П., Руднев С.Г., Николаев Д.В. и др. Биоимпедансный скрининг населения России в центрах здоровья: распространенность избыточной массы тела и ожирения // Российский медицинский журн. 2014. № 4. С. 4.
  3. Wagner D.R. Ultrasound as a tool to assess body fat // J. Obes. 2013. V. 2013. P. 280713.
  4. Bielemann R.M, Gonzalez M.C., Barbosa-Silva T.G. et al. Estimation of body fat in adults using a portable A-mode ultrasound // UNSCN Nutr. 2015. V. 32. № 4. P. 441.
  5. Бондарева Э.А., Парфентьева О.И. Анализ согласованности показателей состава тела, полученных с использованием методов биоимпедансометрии и ультразвукового сканирования // Экология человека. 2021. Т. 28. № 10. С. 57.
  6. Bai M., Susic D., O’Sullivan A.J., Henry A. Reproducibility of Bioelectrical Impedance Analysis in Pregnancy and the Association of Body Composition with the Risk of Gestational Diabetes: A Substudy of MUMS Cohort // J. Obes. 2020. V. 2020. P. 3128767.
  7. Ballesteros-Pomar M.D., González-Arnáiz E., Pintor-de-la Maza B. et al. Bioelectrical impedance analysis as an alternative to dual-energy x-ray absorptiometry in the assessment of fat mass and appendicular lean mass in patients with obesity // Nutrition. 2022. V. 93. P. 111442.
  8. Rudnev S., Burns J.S., Williams P.L. et al. Comparison of bioimpedance body composition in young adults in the Russian Children’s Study // Clin. Nutr. ESPEN. 2020. V. 35. P. 153.
  9. Jackson A.S., Pollock M.L. Generalized equations for predicting body density of men // Br. J. Nutr. 1978. V. 40. № 3. P. 497.
  10. Jackson A.S., Pollock M.L., Ward A. Generalized equations for predicting body density of women // Med. Sci. Sports Exerc. 1980. V. 12. № 3. P. 175.
  11. Николаев Д.В., Смирнов А.В., Бобринская И.Г., Руднев С.Г. Биоимпедансный анализ состава тела человека. M.: Наука, 2009. 392 с.
  12. Liu X.S., Pompey K.T. Bootstrap estimate of bias for intraclass correlation // J. Appl. Meas. 2020. V. 21. № 1. P. 101.
  13. Ho J., Tumkaya T., Aryal S. et al. Moving beyond P values: data analysis with estimation graphics // Nat. Methods. 2019. V. 16. № 7. P. 565.
  14. Kottner J., Audigé L., Brorson S. et al. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed // J. Clin. Epidemiol. 2011. V. 64. № 1. P. 96.
  15. Martins W.P., Nastri C.O. Interpreting reproducibility results for ultrasound measurements // Ultrasound Obstet. Gynecol. 2014. V. 43. № 4. P. 479.
  16. Bland J., Altman D. Statistical methods for assessing agreement between two methods of clinical measurement // Lancet. 1986. V. 1. № 8476. P. 307.
  17. Nickerson B.S., McLester C.N., McLester J.R., Kliszczewicz B.M. Agreement Between 2 Segmental Bioimpedance Devices, BOD POD, and DXA in Obese Adults // J. Clin. Densitom. 2020. V. 23. № 1. P. 138.
  18. Yang S.W., Kim T.H., Choi H.M. The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults // J. Exerc. Rehabil. 2018. V. 14. № 4. P. 621.
  19. Hamilton-James K., Collet T.H., Pichard C. et al. Precision and accuracy of bioelectrical impedance analysis devices in supine versus standing position with or without retractable handle in Caucasian subjects // Clin. Nutr. ESPEN. 2021. V. 45. P. 267.
  20. Parker H., Hunt E.T., Brazendale K. et al. Accuracy and Precision of Opportunistic Measures of Body Composition from the Tanita DC-430U // Child. Obes. 2022. https://doi.org/10.1089/chi.2022.0084
  21. Miclos-Balica M., Muntean P., Schick F. et al. Reliability of body composition assessment using A-mode ultrasound in a heterogeneous sample // Eur. J. Clin. Nutr. 2021. V. 75. № 3. P. 438.
  22. Elsey A.M., Lowe A.K., Cornell A.N. et al. Comparison of the Three-Site and Seven-Site Measurements in Female Collegiate Athletes Using BodyMetrix™ // Int. J. Exerc. Sci. 2021. V. 14. № 4. P. 230.
  23. Ribeiro G., de Aguiar R.A., Penteado R. et al. A-Mode Ultrasound Reliability in Fat and Muscle Thickness Measurement // J. Strength Cond. Res. 2022. V. 36. № 6. P. 1610.
  24. Totosy de Zepetnek J.O., Lee J.J., Boateng T. et al. Test-retest reliability and validity of body composition methods in adults // Clin. Physiol. Funct. Imaging. 2021. V. 41. № 5. P. 417.
  25. Hendrickson N., Davison J., Schiller L., Willey M. Reliability and Validity of A-Mode Ultrasound to Quantify Body Composition // J. Orthop. Trauma. 2019. V. 33. № 9. P. 472.
  26. Wagner D.R., Teramoto M. Interrater reliability of novice examiners using A-mode ultrasound and skinfolds to measure subcutaneous body fat // PloS One. 2020. V. 15. № 12. P. e0244019.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (499KB)
3.

下载 (465KB)
4.

下载 (545KB)

版权所有 © Э.А. Бондарева, О.И. Парфентьева, А.А. Васильева, Н.А. Кулемин, Е.В. Попова, А.Н. Гаджиахмедова, О.Н. Ковалева, Н.Н. Хромов-Борисов, 2023

##common.cookie##