Neurovascular Coupling: Physiological Foundations, Assessment Methods, and Post-Stroke Changes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this article is to summarize current knowledge on the physiological basis of neurovascular coupling, highlight key aspects of its disruption in stroke, and consider the potential of integrating functional magnetic resonance imaging and arterial spin labeling methods for assessing these processes. The article describes in detail the mechanism of neurovascular coupling under normal conditions, as well as the impact of stroke on neurovascular uncoupling in the lesion site and in intact brain regions. Special attention is given to the use of functional MRI and arterial spin labeling as tools for evaluating perfusion changes and neuronal activity. Recent studies are reviewed to illustrate their application in clinical and research contexts, with an assessment of the strengths and limitations of these techniques in characterizing neurovascular coupling. The prospects of integrating these approaches for comprehensive assessment and monitoring of neurovascular coupling, and for the development of therapeutic strategies aimed at restoring neurovascular interactions in stroke patients, are discussed. This article provides a scientific basis for further studies in functional, quantitative, and noninvasive neuroimaging with a focus on evaluating neurovascular impairments.

About the authors

V. D Abramova

International Tomography Center, Siberian Branch of the RAS (SB RAS); Novosibirsk State University

Email: victoria.d.abramova@gmail.com
ORCID iD: 0000-0002-3791-7950
Junior Researcher; PhD student Novosibirsk, Russian Federation; Novosibirsk, Russian Federation

E. D Petrovskiy

International Tomography Center, Siberian Branch of the RAS (SB RAS)

Email: petrovskiy@tomo.nsc.ru
ORCID iD: 0000-0003-4325-4062
Junior Researcher Novosibirsk, Russian Federation

A. M Korostyshevskaya

International Tomography Center, Siberian Branch of the RAS (SB RAS)

Email: koro@tomo.nsc.ru
ORCID iD: 0000-0002-0095-8994
Dr. Sci. (Medicine), Leading Researcher Novosibirsk, Russian Federation

A. A Savelov

International Tomography Center, Siberian Branch of the RAS (SB RAS)

Email: as@tomo.nsc.ru
ORCID iD: 0000-0002-5332-2607
PhD (Physics), Senior Researcher Novosibirsk, Russian Federation

References

  1. Mink J.W., Blumenschine R.J., Adams D.B. Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis // Am. J. Physiol. 1981. V. 241. № 3. P. R203.
  2. Bo W., Che R., Liu Q. et al. Investigations on Na+, K+–ATPase energy consumption in ion flow of hydrophilic pores by THz unipolar stimulation // iScience. 2023. V. 26. № 10. P. 107849.
  3. Obel L.F., Müller M.S., Walls A.B. et al. Brain glycogen – new perspectives on its metabolic function and regulation at the subcellular level // Front. Neuroenergetics. 2012. V. 4. P. 3.
  4. Shaw K., Bell L., Boyd K. et al. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences // Nat. Commun. 2021. V. 12. № 1. P. 3190.
  5. Iadecola C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease // Neuron. 2017. V. 96. № 1. P. 17.
  6. Zhang Z., Hasan S., Sadan O. et al. Contralateral Neurovascular Coupling in Patients with Ischemic Stroke After Endovascular Thrombectomy // Neurocrit. Care. 2025. V. 42. № 3. P. 996.
  7. Ruan Z., Sun D., Zhou X. et al. Altered neurovascular coupling in patients with vascular cognitive impairment: A combined ASL-fMRI analysis // Front. Aging Neurosci. 2023. V. 15. P. 1224525.
  8. Van Dijk S.E., Drenth N., Hafkemeijer A. et al. Neurovascular decoupling is associated with lobar intracerebral hemorrhages and white matter hyperintensities // J. Am. Heart Assoc. 2025. V. 14. № 4. P. e038819.
  9. Beishon L.C., Minhas J.S. Cerebral autoregulation and neurovascular coupling in acute and chronic stroke // Front. Neurol. 2021. V. 12. P. 720770.
  10. Kagialis A., Simos N., Manolitsi K. et al. Functional connectivity–hemodynamic (un)coupling changes in chronic mild brain injury are associated with mental health and neurocognitive indices: a resting state fMRI study // Neuroradiology. 2024. V. 66. № 6. P. 985.
  11. Attwell D., Buchan A.M., Charpak S. et al. Glial and neuronal control of brain blood flow // Nature. 2010. V. 468. № 7321. P. 232.
  12. Hosford P.S., Gourine A.V. What is the key mediator of the neurovascular coupling response? // Neurosci. Biobehav. Rev. 2019. V. 96. P. 174.
  13. Jackson J.G., Krizman E., Takano H. et al. Activation of glutamate transport increases arteriole diameter in vivo: Implications for neurovascular coupling // Front. Cell. Neurosci. 2022. V. 16. P. 831061.
  14. Bowen R.M., York N.W., Padawer-Curry J. et al. Control of neurovascular coupling by ATP-sensitive potassium channels // J. Cereb. Blood Flow Metab. 2025. V. 45. № 6. P. 1130.
  15. Sancho M., Hald B.O., Welsh D.G. A stepwise approach to resolving small ionic currents in vascular tissue // Am. J. Physiol. Heart Circ. Physiol. 2020. V. 318. № 3. P. H632.
  16. Dongé E., Harasztos L., Nádasy G.L., Kiss L. The effect of hydrogen sulfide on the contractility of cerebral arterioles. A pilot study // Physiol. Int. 2022. V. 109. № 1. P. 70.
  17. Aksenov D.P., Gascoigne D.A., Duan J., Drobyshevsky A. Function and development of interneurons involved in brain tissue oxygen regulation // Front. Mol. Neurosci. 2022. V. 15. P. 1069496.
  18. Xavier F.E. Nitrergic perivascular innervation in health and diseases: Focus on vascular tone regulation // Acta Physiol. 2020. V. 230. № 1. P. e13484.
  19. Diaz-Flores L., Gutierrez R., García M.P. et al. Comparison of the behavior of perivascular cells (pericytes and CD34+ stromal cell/telocytes) in Sprouting and Intussusceptive Angiogenesis // Int. J. Mol. Sci. 2022. V. 23. № 16. P. 9010.
  20. Mishra A., Gordon G.R., MacVicar B.A., Newman E.A. Astrocyte regulation of cerebral blood flow in health and disease // Cold Spring Harb. Perspect. Biol. 2024. V. 16. № 4. P. a041354.
  21. Scarpellino G., Brunetti V., Berra-Romani R. et al. The unexpected role of the endothelial nitric oxide synthase at the neurovascular unit: Beyond the regulation of cerebral blood flow // Int. J. Mol. Sci. 2024. V. 25. № 16. P. 9071.
  22. Woodsend C., Buckley C., Zhang X. et al. Endothelial membrane potential changes are required for propagated vasodilation // Physiology. 2024. V. 39. № S1. P. 2016.
  23. Ando J., Yamamoto K. Hemodynamic forces, endothelial mechanotransduction, and vascular diseases // Magn. Reson. Med. Sci. 2022. V. 21. № 2. P. 258.
  24. Ribeiro-Silva J.C., Miyakawa A.A., Krieger J.E. Focal adhesion signaling: vascular smooth muscle cell contractility beyond calcium mechanisms // Clin. Sci. 2021. V. 135. № 9. P. 1189.
  25. Hong K.-S., Kim K., Hill M.A. Regulation of blood flow in small arteries: mechanosensory events underlying myogenic vasoconstriction // J. Exerc. Rehabil. 2020. V. 16. № 3. P. 207.
  26. Claassen J.A.H.R., Thijssen D.H.J., Panerai R.B., Faraci F.M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation // Physiol. Rev. 2021. V. 101. № 4. P. 1487.
  27. Hattori Y. The multiple roles of pericytes in vascular formation and microglial functions in the brain // Life. 2022. V. 12. № 11. P. 1835.
  28. Moskowitz M.A., Lo E.H., Iadecola C. The science of stroke: Mechanisms in search of treatments // Neuron. 2010. V. 67. № 2. P. 181.
  29. Kitagawa K. CREB and cAMP response element-mediated gene expression in the ischemic brain // FEBS J. 2007. V. 274. № 13. P. 3210.
  30. Wang Y., Qin Z. Molecular and cellular mechanisms of excitotoxic neuronal death // Apoptosis. 2010. V. 15. № 11. P. 1382.
  31. Belov Kirdajova D., Kriska J., Tureckova J., Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial Cells // Front. Cell. Neurosci. 2020. V. 14. P. 51.
  32. Choi D.W. Excitotoxicity: Still hammering the ischemic brain in 2020 // Front. Neurosci. 2020. V. 14. P. 579953.
  33. Sato Y., Falcone-Juengert J., Tominaga T. et al. Remodeling of the neurovascular unit following cerebral ischemia and hemorrhage // Cells. 2022. V. 11. № 18. P. 2823.
  34. Huang Y., Chen S., Luo Y., Han Z. Crosstalk between inflammation and the BBB in stroke // Curr. Neuropharmacol. 2020. V. 18. № 12. P. 1227.
  35. Candelario-Jalil E., Djikhuizen R.M., Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities // Stroke. 2022. V. 53. № 5. P. 1473.
  36. Boukrina O., Barrett A.M., Graves W.W. Cerebral perfusion of the left reading network predicts recovery of reading in subacute to chronic stroke // Hum. Brain Mapp. 2019. V. 40. № 18. P. 5301.
  37. Thompson C.K., Walenski M., Chen Y. et al. Intrahemispheric perfusion in chronic stroke-induced aphasia // Neural Plast. 2017. V. 2017. P. 2361691.
  38. Wiest R., Abela E., Missimer J. et al. Interhemispheric cerebral blood flow balance during recovery of motor hand function after ischemic stroke – A longitudinal MRI study using arterial spin labeling perfusion // PLoS One. 2014. V. 9. № 9. P. e106327.
  39. Girouard H., Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease // J. Appl. Physiol. 2006. V. 100. № 1. P. 328.
  40. He F., Sullender C.T., Zhu H. et al. Multimodal mapping of neural activity and cerebral blood flow reveals long-lasting neurovascular dissociations after small-scale strokes // Sci. Adv. 2020. V. 6. № 21. P. eaba1933.
  41. Demeestere J., Wouters A., Christensen S. et al. Review of perfusion imaging in acute ischemic stroke: From time to tissue // Stroke. 2020. V. 51. № 3. P. 1017.
  42. D’Esposito M., Deouell L.Y., Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging // Nat. Rev. Neurosci. 2003. V. 4. № 11. P. 863.
  43. Krainik A., Hund-Georgiadis M., Zysset S., Von Cramon D.Y. Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke // Stroke. 2005. V. 36. № 6. P. 1146.
  44. Pineiro R., Pendlebury S., Johansen-Berg H., Matthews P.M. Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI // Stroke. 2002. V. 33. № 1. P. 103.
  45. Toth P., Tarantini S., Csiszar A., Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: Mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging // Am. J. Physiol. Heart Circ. Physiol. 2017. V. 312. № 1. P. H1.
  46. Duncombe J., Lennen R.J., Jansen M.A. et al. Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis // Neuropathol. Appl. Neurobiol. 2017. V. 43. № 6. P. 477.
  47. Donnan G.A., Fisher M., Macleod M., Davis S.M. Stroke // Lancet. 2008. V. 371. № 9624. P. 1612.
  48. Duong M.T., Nasrallah I.M., Wolk D.A. et al. Cholesterol, atherosclerosis, and APOE in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Potential mechanisms and therapy // Front. Aging Neurosci. 2021. V. 13. P. 647990.
  49. Ogawa S., Lee T.M., Kay A.R., Tank D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation // Proc. Natl. Acad. Sci. U.S.A. 1990. V. 87. № 24. P. 9868.
  50. Grade M., Hernandez Tamames J.A., Pizzini F.B. et al. A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice // Neuroradiology. 2015. V. 57. № 12. P. 1181.
  51. Blicher J.U., Stagg C.J., O’Shea J. et al. Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI // J. Cereb. Blood Flow Metab. 2012. V. 32. № 11. P. 2044.
  52. Gauthier C.J., Fan A.P. BOLD signal physiology: Models and applications // NeuroImage. 2019. V. 187. P. 116.
  53. Renvall V., Nangini C., Hari R. All that glitters is not BOLD: Inconsistencies in functional MRI // Sci. Rep. 2014. V. 4. № 1. P. 3920.
  54. Martineau E., Malescot A., Elmkinsi N., Rungta R.L. Distal activity patterns shape the spatial specificity of neurovascular coupling // Nat. Neurosci. 2024. V. 27. № 11. P. 2101.
  55. Liau J., Perthen J.E., Liu T.T. Caffeine reduces the activation extent and contrast-to-noise ratio of the functional cerebral blood flow response but not the BOLD response // NeuroImage. 2008. V. 42. № 1. P. 296.
  56. Liang X., Zou Q., He Y., Yang Y. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain // Proc. Natl. Acad. Sci. U.S.A. 2013. V. 110. № 5. P. 1929.
  57. Li J., Zeng Q., Luo X. et al. Decoupling of regional cerebral blood flow and brain function along the Alzheimer’s disease continuum // J. Alzheimers Dis. 2023. V. 95. № 1. P. 287.
  58. Hu B., Yan L.-F., Sun Q. et al. Disturbed neurovascular coupling in type 2 diabetes mellitus patients: Evidence from a comprehensive fMRI analysis // NeuroImage Clin. 2019. V. 22. P. 101802.
  59. Li H., Li Y., Zhong Q. et al. Dysfunction of neurovascular coupling in patients with cerebral small vessel disease: A combined resting-state fMRI and arterial spin labeling study // Exp. Gerontol. 2024. V. 194. P. 112478.
  60. Ruan Z., Sun D., Zhou X. et al. Altered neurovascular coupling in patients with vascular cognitive impairment: A combined ASL-fMRI analysis // Front. Aging Neurosci. 2023. V. 15. P. 1224525.
  61. Zanon Zotin M.C., Sveikata L., Viswanathan A., Yilmaz P. Cerebral small vessel disease and vascular cognitive impairment: From diagnosis to management // Curr. Opin. Neurol. 2021. V. 34. № 2. P. 246.
  62. Owens C.D., Bonin Pinto C., Detwiler S. et al. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19 // Brain Commun. 2024. V. 6. № 2. P. fcae080.
  63. Liu X., Cheng R., Chen L. et al. Altered neurovascular coupling in subcortical ischemic vascular disease // Front. Aging Neurosci. 2021. V. 13. P. 598365.
  64. Salinet A.S., Silva N.C., Caldas J. et al. Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: Influence of severity? // J. Cereb. Blood Flow Metab. 2019. V. 39. № 11. P. 2277.
  65. Wu D., Liu X., Gadhoumi K. et al. Causal relationship between neuronal activity and cerebral hemodynamics in patients with ischemic stroke // J. Neural Eng. 2020. V. 17. № 2. P. 026006.
  66. Chao X., Fang Y., Lu Z. et al. Impairments of neurovascular coupling after stroke lower glymphatic system function and lead to depressive symptom: A longitudinal cohort study // J. Affect. Disord. 2024. V. 367. P. 255.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).