Функциональное нейроваскулярное взаимодействие: физиологические основы, методы оценки, изменения в постинсультном периоде
- Авторы: Абрамова В.Д1,2, Петровский Е.Д1, Коростышевская А.М1, Савелов А.А1
-
Учреждения:
- ФГБУН Институт «Международный томографический центр» СО РАН
- Новосибирский национальный исследовательский государственный университет
- Выпуск: Том 51, № 6 (2025)
- Страницы: 181-194
- Раздел: ОБЗОРЫ
- URL: https://journals.rcsi.science/0131-1646/article/view/375874
- DOI: https://doi.org/10.7868/S3034615025060144
- ID: 375874
Цитировать
Аннотация
Об авторах
В. Д Абрамова
ФГБУН Институт «Международный томографический центр» СО РАН; Новосибирский национальный исследовательский государственный университет
Email: victoria.d.abramova@gmail.com
ORCID iD: 0000-0002-3791-7950
младший научный сотрудник; аспирантка Новосибирск, Российская Федерация; Новосибирск, Российская Федерация
Е. Д Петровский
ФГБУН Институт «Международный томографический центр» СО РАН
Email: petrovskiy@tomo.nsc.ru
ORCID iD: 0000-0003-4325-4062
младший научный сотрудник Новосибирск, Российская Федерация
А. М Коростышевская
ФГБУН Институт «Международный томографический центр» СО РАН
Email: koro@tomo.nsc.ru
ORCID iD: 0000-0002-0095-8994
доктор медицинских наук, ведущий научный сотрудник Новосибирск, Российская Федерация
А. А Савелов
ФГБУН Институт «Международный томографический центр» СО РАН
Email: as@tomo.nsc.ru
ORCID iD: 0000-0002-5332-2607
кандидат физико-математических наук, старший научный сотрудник Новосибирск, Российская Федерация
Список литературы
- Mink J.W., Blumenschine R.J., Adams D.B. Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis // Am. J. Physiol. 1981. V. 241. № 3. P. R203.
- Bo W., Che R., Liu Q. et al. Investigations on Na+, K+–ATPase energy consumption in ion flow of hydrophilic pores by THz unipolar stimulation // iScience. 2023. V. 26. № 10. P. 107849.
- Obel L.F., Müller M.S., Walls A.B. et al. Brain glycogen – new perspectives on its metabolic function and regulation at the subcellular level // Front. Neuroenergetics. 2012. V. 4. P. 3.
- Shaw K., Bell L., Boyd K. et al. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences // Nat. Commun. 2021. V. 12. № 1. P. 3190.
- Iadecola C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease // Neuron. 2017. V. 96. № 1. P. 17.
- Zhang Z., Hasan S., Sadan O. et al. Contralateral Neurovascular Coupling in Patients with Ischemic Stroke After Endovascular Thrombectomy // Neurocrit. Care. 2025. V. 42. № 3. P. 996.
- Ruan Z., Sun D., Zhou X. et al. Altered neurovascular coupling in patients with vascular cognitive impairment: A combined ASL-fMRI analysis // Front. Aging Neurosci. 2023. V. 15. P. 1224525.
- Van Dijk S.E., Drenth N., Hafkemeijer A. et al. Neurovascular decoupling is associated with lobar intracerebral hemorrhages and white matter hyperintensities // J. Am. Heart Assoc. 2025. V. 14. № 4. P. e038819.
- Beishon L.C., Minhas J.S. Cerebral autoregulation and neurovascular coupling in acute and chronic stroke // Front. Neurol. 2021. V. 12. P. 720770.
- Kagialis A., Simos N., Manolitsi K. et al. Functional connectivity–hemodynamic (un)coupling changes in chronic mild brain injury are associated with mental health and neurocognitive indices: a resting state fMRI study // Neuroradiology. 2024. V. 66. № 6. P. 985.
- Attwell D., Buchan A.M., Charpak S. et al. Glial and neuronal control of brain blood flow // Nature. 2010. V. 468. № 7321. P. 232.
- Hosford P.S., Gourine A.V. What is the key mediator of the neurovascular coupling response? // Neurosci. Biobehav. Rev. 2019. V. 96. P. 174.
- Jackson J.G., Krizman E., Takano H. et al. Activation of glutamate transport increases arteriole diameter in vivo: Implications for neurovascular coupling // Front. Cell. Neurosci. 2022. V. 16. P. 831061.
- Bowen R.M., York N.W., Padawer-Curry J. et al. Control of neurovascular coupling by ATP-sensitive potassium channels // J. Cereb. Blood Flow Metab. 2025. V. 45. № 6. P. 1130.
- Sancho M., Hald B.O., Welsh D.G. A stepwise approach to resolving small ionic currents in vascular tissue // Am. J. Physiol. Heart Circ. Physiol. 2020. V. 318. № 3. P. H632.
- Dongé E., Harasztos L., Nádasy G.L., Kiss L. The effect of hydrogen sulfide on the contractility of cerebral arterioles. A pilot study // Physiol. Int. 2022. V. 109. № 1. P. 70.
- Aksenov D.P., Gascoigne D.A., Duan J., Drobyshevsky A. Function and development of interneurons involved in brain tissue oxygen regulation // Front. Mol. Neurosci. 2022. V. 15. P. 1069496.
- Xavier F.E. Nitrergic perivascular innervation in health and diseases: Focus on vascular tone regulation // Acta Physiol. 2020. V. 230. № 1. P. e13484.
- Diaz-Flores L., Gutierrez R., García M.P. et al. Comparison of the behavior of perivascular cells (pericytes and CD34+ stromal cell/telocytes) in Sprouting and Intussusceptive Angiogenesis // Int. J. Mol. Sci. 2022. V. 23. № 16. P. 9010.
- Mishra A., Gordon G.R., MacVicar B.A., Newman E.A. Astrocyte regulation of cerebral blood flow in health and disease // Cold Spring Harb. Perspect. Biol. 2024. V. 16. № 4. P. a041354.
- Scarpellino G., Brunetti V., Berra-Romani R. et al. The unexpected role of the endothelial nitric oxide synthase at the neurovascular unit: Beyond the regulation of cerebral blood flow // Int. J. Mol. Sci. 2024. V. 25. № 16. P. 9071.
- Woodsend C., Buckley C., Zhang X. et al. Endothelial membrane potential changes are required for propagated vasodilation // Physiology. 2024. V. 39. № S1. P. 2016.
- Ando J., Yamamoto K. Hemodynamic forces, endothelial mechanotransduction, and vascular diseases // Magn. Reson. Med. Sci. 2022. V. 21. № 2. P. 258.
- Ribeiro-Silva J.C., Miyakawa A.A., Krieger J.E. Focal adhesion signaling: vascular smooth muscle cell contractility beyond calcium mechanisms // Clin. Sci. 2021. V. 135. № 9. P. 1189.
- Hong K.-S., Kim K., Hill M.A. Regulation of blood flow in small arteries: mechanosensory events underlying myogenic vasoconstriction // J. Exerc. Rehabil. 2020. V. 16. № 3. P. 207.
- Claassen J.A.H.R., Thijssen D.H.J., Panerai R.B., Faraci F.M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation // Physiol. Rev. 2021. V. 101. № 4. P. 1487.
- Hattori Y. The multiple roles of pericytes in vascular formation and microglial functions in the brain // Life. 2022. V. 12. № 11. P. 1835.
- Moskowitz M.A., Lo E.H., Iadecola C. The science of stroke: Mechanisms in search of treatments // Neuron. 2010. V. 67. № 2. P. 181.
- Kitagawa K. CREB and cAMP response element-mediated gene expression in the ischemic brain // FEBS J. 2007. V. 274. № 13. P. 3210.
- Wang Y., Qin Z. Molecular and cellular mechanisms of excitotoxic neuronal death // Apoptosis. 2010. V. 15. № 11. P. 1382.
- Belov Kirdajova D., Kriska J., Tureckova J., Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial Cells // Front. Cell. Neurosci. 2020. V. 14. P. 51.
- Choi D.W. Excitotoxicity: Still hammering the ischemic brain in 2020 // Front. Neurosci. 2020. V. 14. P. 579953.
- Sato Y., Falcone-Juengert J., Tominaga T. et al. Remodeling of the neurovascular unit following cerebral ischemia and hemorrhage // Cells. 2022. V. 11. № 18. P. 2823.
- Huang Y., Chen S., Luo Y., Han Z. Crosstalk between inflammation and the BBB in stroke // Curr. Neuropharmacol. 2020. V. 18. № 12. P. 1227.
- Candelario-Jalil E., Djikhuizen R.M., Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities // Stroke. 2022. V. 53. № 5. P. 1473.
- Boukrina O., Barrett A.M., Graves W.W. Cerebral perfusion of the left reading network predicts recovery of reading in subacute to chronic stroke // Hum. Brain Mapp. 2019. V. 40. № 18. P. 5301.
- Thompson C.K., Walenski M., Chen Y. et al. Intrahemispheric perfusion in chronic stroke-induced aphasia // Neural Plast. 2017. V. 2017. P. 2361691.
- Wiest R., Abela E., Missimer J. et al. Interhemispheric cerebral blood flow balance during recovery of motor hand function after ischemic stroke – A longitudinal MRI study using arterial spin labeling perfusion // PLoS One. 2014. V. 9. № 9. P. e106327.
- Girouard H., Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease // J. Appl. Physiol. 2006. V. 100. № 1. P. 328.
- He F., Sullender C.T., Zhu H. et al. Multimodal mapping of neural activity and cerebral blood flow reveals long-lasting neurovascular dissociations after small-scale strokes // Sci. Adv. 2020. V. 6. № 21. P. eaba1933.
- Demeestere J., Wouters A., Christensen S. et al. Review of perfusion imaging in acute ischemic stroke: From time to tissue // Stroke. 2020. V. 51. № 3. P. 1017.
- D’Esposito M., Deouell L.Y., Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging // Nat. Rev. Neurosci. 2003. V. 4. № 11. P. 863.
- Krainik A., Hund-Georgiadis M., Zysset S., Von Cramon D.Y. Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke // Stroke. 2005. V. 36. № 6. P. 1146.
- Pineiro R., Pendlebury S., Johansen-Berg H., Matthews P.M. Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI // Stroke. 2002. V. 33. № 1. P. 103.
- Toth P., Tarantini S., Csiszar A., Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: Mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging // Am. J. Physiol. Heart Circ. Physiol. 2017. V. 312. № 1. P. H1.
- Duncombe J., Lennen R.J., Jansen M.A. et al. Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis // Neuropathol. Appl. Neurobiol. 2017. V. 43. № 6. P. 477.
- Donnan G.A., Fisher M., Macleod M., Davis S.M. Stroke // Lancet. 2008. V. 371. № 9624. P. 1612.
- Duong M.T., Nasrallah I.M., Wolk D.A. et al. Cholesterol, atherosclerosis, and APOE in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Potential mechanisms and therapy // Front. Aging Neurosci. 2021. V. 13. P. 647990.
- Ogawa S., Lee T.M., Kay A.R., Tank D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation // Proc. Natl. Acad. Sci. U.S.A. 1990. V. 87. № 24. P. 9868.
- Grade M., Hernandez Tamames J.A., Pizzini F.B. et al. A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice // Neuroradiology. 2015. V. 57. № 12. P. 1181.
- Blicher J.U., Stagg C.J., O’Shea J. et al. Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI // J. Cereb. Blood Flow Metab. 2012. V. 32. № 11. P. 2044.
- Gauthier C.J., Fan A.P. BOLD signal physiology: Models and applications // NeuroImage. 2019. V. 187. P. 116.
- Renvall V., Nangini C., Hari R. All that glitters is not BOLD: Inconsistencies in functional MRI // Sci. Rep. 2014. V. 4. № 1. P. 3920.
- Martineau E., Malescot A., Elmkinsi N., Rungta R.L. Distal activity patterns shape the spatial specificity of neurovascular coupling // Nat. Neurosci. 2024. V. 27. № 11. P. 2101.
- Liau J., Perthen J.E., Liu T.T. Caffeine reduces the activation extent and contrast-to-noise ratio of the functional cerebral blood flow response but not the BOLD response // NeuroImage. 2008. V. 42. № 1. P. 296.
- Liang X., Zou Q., He Y., Yang Y. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain // Proc. Natl. Acad. Sci. U.S.A. 2013. V. 110. № 5. P. 1929.
- Li J., Zeng Q., Luo X. et al. Decoupling of regional cerebral blood flow and brain function along the Alzheimer’s disease continuum // J. Alzheimers Dis. 2023. V. 95. № 1. P. 287.
- Hu B., Yan L.-F., Sun Q. et al. Disturbed neurovascular coupling in type 2 diabetes mellitus patients: Evidence from a comprehensive fMRI analysis // NeuroImage Clin. 2019. V. 22. P. 101802.
- Li H., Li Y., Zhong Q. et al. Dysfunction of neurovascular coupling in patients with cerebral small vessel disease: A combined resting-state fMRI and arterial spin labeling study // Exp. Gerontol. 2024. V. 194. P. 112478.
- Ruan Z., Sun D., Zhou X. et al. Altered neurovascular coupling in patients with vascular cognitive impairment: A combined ASL-fMRI analysis // Front. Aging Neurosci. 2023. V. 15. P. 1224525.
- Zanon Zotin M.C., Sveikata L., Viswanathan A., Yilmaz P. Cerebral small vessel disease and vascular cognitive impairment: From diagnosis to management // Curr. Opin. Neurol. 2021. V. 34. № 2. P. 246.
- Owens C.D., Bonin Pinto C., Detwiler S. et al. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19 // Brain Commun. 2024. V. 6. № 2. P. fcae080.
- Liu X., Cheng R., Chen L. et al. Altered neurovascular coupling in subcortical ischemic vascular disease // Front. Aging Neurosci. 2021. V. 13. P. 598365.
- Salinet A.S., Silva N.C., Caldas J. et al. Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: Influence of severity? // J. Cereb. Blood Flow Metab. 2019. V. 39. № 11. P. 2277.
- Wu D., Liu X., Gadhoumi K. et al. Causal relationship between neuronal activity and cerebral hemodynamics in patients with ischemic stroke // J. Neural Eng. 2020. V. 17. № 2. P. 026006.
- Chao X., Fang Y., Lu Z. et al. Impairments of neurovascular coupling after stroke lower glymphatic system function and lead to depressive symptom: A longitudinal cohort study // J. Affect. Disord. 2024. V. 367. P. 255.
Дополнительные файлы

