Neurotrophic Hypothesis of Development of Depression

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, depression is a widespread mental disorder in modern society and is associated with significant impairments in the quality of life of patients. The review examines the main representatives of neurotrophic factors belonging to various families, in particular nerve growth factor, transforming growth factor beta, neurokines and non-neuronal factors. Neurotrophins, being large polypeptides, play an integrative role, fulfilling the signaling mission of intermediaries in a wide range of physiological processes. At the moment, a large number of studies have been carried out in order to understand the interaction between factors of various directions, including biological, psychological and environmental factors that determine the etiopathogenesis of this pathology. Based on the data obtained, one of the main hypotheses for the development of depression is considered - neurotrophic, which most fully explains the emerging pathogenetic changes. According to this hypothesis, the leading role in the etiology of depression is played by neurotrophic factors that ensure the maintenance of normal neuron-glial interaction, the processes of neurogenesis, angiogenesis, and synaptic plasticity. Neurotrophins have a high physiological activity due to the presence of several binding groups for different cell receptors and the regulatory ability to express other signaling molecules, the ability to penetrate the blood-brain barrier, showing trophic, anti-inflammatory, growth, mediator and effector properties. To date, the mechanisms of the onset of depression, despite the widespread prevalence of this pathology, remain largely unclear, hindering a directed search for targets for the development of effective therapy. The revealed disorders of neurotrophic factors in depression make it reasonable to consider neurotrophins as therapeutic agents in a multitarget approach to the treatment of depressive disorders.

Full Text

Restricted Access

About the authors

A. L. Yasenyavskaya

Astrakhan State Medical University of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: yasen_9@mail.ru
Russian Federation, Astrakhan

A. A. Tsibizova

Astrakhan State Medical University of the Ministry of Health of the Russian Federation

Email: yasen_9@mail.ru
Russian Federation, Astrakhan

M. A. Samotrueva

Astrakhan State Medical University of the Ministry of Health of the Russian Federation

Email: yasen_9@mail.ru
Russian Federation, Astrakhan

References

  1. McCarron R.M., Shapiro B., Rawles J., Luo J. Depression // Ann. Intern. Med. 2021. V. 174. № 5. P. ITC65.
  2. Malhi G.S., Mann J.J. Depression // Lancet. 2018. V. 392. № 10161. P. 2299.
  3. Levin O.S., Vasenina E.E. [Depression and cognitive decline in elderly: causes and consequences] // Zh. Nevrol. Psikhiat. Im. S.S. Korsakova. 2019. V. 119. № 7. P. 87.
  4. Park C., Rosenblat J.D., Brietzke E. et al. Stress, epigenetics and depression: A systematic review // Neurosci. Biobehav. Rev. 2019. V. 102. P. 139.
  5. Prévot T., Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders // Mol. Psychiatry. 2021. V. 26. № 1. P. 151.
  6. Dudek K.A., Dion-Albert L., Lebel M. et al. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117. № 6. P. 3326.
  7. Uiterwijk D., Stargatt R., Humphrey S. et al. The Relationship Between Cognitive Functioning and Symptoms of Depression, Anxiety, and Post-Traumatic Stress Disorder in Adults with a Traumatic Brain Injury: a Meta-Analysis // Neuropsychol. Rev. 2022. V. 32. № 4. P. 758.
  8. Jaggar M., Fanibunda S.E., Ghosh S. et al. The Neurotrophic Hypothesis of Depression Revisited: New Insights and Therapeutic Implications / Neurobiology of depression. Academic Press, 2019. P. 43.
  9. Levy M.J.F., Boulle F., Steinbusch H.W. et al. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression // Psychopharmacology (Berl). 2018. V. 235. № 8. P. 2195.
  10. Sahay A., Kale A., Joshi S. Role of neurotrophins in pregnancy and offspring brain development // Neuropeptides. 2020. V. 83. P. 102075.
  11. Rowland T., Perry B.I., Upthegrove R. et al. Neurotrophins, cytokines, oxidative stress mediators and mood state in bipolar disorder: systematic review and meta-analyses // Br. J. Psychiatry. 2018. V. 213. № 3. P. 514.
  12. Duman R.S., Li N. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012. V. 367. № 1601. P. 2475.
  13. Yang T., Nie Z., Shu H. et al. The role of BDNF on neural plasticity in depression // Front. Cell. Neurosci. 2020. V. 14. P. 82.
  14. Levy Y.S., Gilgun-Sherki Y., Melamed E., Offen D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases // BioDrugs. 2005. V. 19. № 2. P. 97.
  15. Sahay A., Kale A., Joshi S. The role of neurotrophins in pregnancy and brain development of offspring // Neuropeptides. 2020. V. 83. P. 102075.
  16. Xue Y., Liang H., Yang R. et al. The role of pro-and mature neurotrophins in the depression // Behav. Brain Research. 2021. V. 404. P. 113162.
  17. Mondal A.C., Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment // Int. J. Neurosci. 2019. V. 129. № 3. P. 283.
  18. Sharma B. Neurochemical signaling in depression: the effect of targeted pharmaceuticals // Modern Drug Therapy. 2023. V. 18. № 1. Р. 2.
  19. Shi Y., Luan D., Song R., Zhang Z. Value of peripheral neurotrophin levels for the diagnosis of depression and response to treatment: a systematic review and meta-analysis // Eur. Neuropsychopharmacol. 2020. V. 41. P. 40.
  20. Koo J.W., Chaudhury D., Han M.H., Nestler E.J. Role of mesolimbic brain-derived neurotrophic factor in depression // Biol. Psychiatry. 2019. V. 86. № 10. P. 738.
  21. Duman R.S., Deyama S., Fogaça M.V. Role of BDNF in the pathophysiology and treatment of depression: Activity‐dependent effects distinguish rapid‐acting antidepressants // Eur. J. Neurosci. 2021. V. 53. № 1. P. 126.
  22. Colucci-D’Amato L., Speranza L., Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer // Int. J. Mol. Sci. 2020. V. 21. № 20. P. 7777.
  23. Arosio B., Guerini F.R., Voshaar R.C.O., Aprahamian I. Blood brain-derived neurotrophic factor (BDNF) and major depression: do we have a translational perspective? // Front. Behave. Neurosci. 2021. V. 15. P. 626906.
  24. Rana T., Behl T., Sehgal A. et al. Unfolding the Role of BDNF as a Biomarker for Treatment of Depression // J. Mol. Neurosci. 2021. V. 71. № 10. P. 2008.
  25. De Miranda A.S., De Barros J.L.V.M., Teixeira A.L. Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? // Expert Opin. Ther. Targets. 2020. V. 24. № 12. P. 1225.
  26. Wysokiński A. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia // Nord. J. Psychiatry. 2016. V. 70. № 4. P. 267.
  27. Arabska J., Łucka A., Strzelecki D., Wysokiński A. In schizophrenia serum level of neurotrophin-3 (NT-3) is increased only if depressive symptoms are present // Neurosci. Lett. 2018. V. 684. P. 152.
  28. Valvassori S.S., Mariot E., Varela R.B. et al. The role of neurotrophic factors in manic-, anxious-and depressive-like behaviors induced by amphetamine sensitization: Implications to the animal model of bipolar disorder // J. Affect. Disord. 2019. V. 245. P. 1106.
  29. Zhang K., Yang C., Chang L. et al. Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1 // Transl. Psychiatry. 2020. V. 10. № 1. P. 32.
  30. Mitra S., Werner C., Dietz D.M. Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders // Mol. Psychiatry. 2022. V. 27. № 1. P. 296.
  31. Krieglstein K., Zheng F., Unsicker K., Alzheimer C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses // Trends Neurosci. 2011. V. 34. № 8. P. 421.
  32. Tunc-Ozcan E., Brooker S.M., Bonds J.A. et al. Hippocampal BMP signaling as a common pathway for antidepressant action // Cell. Mol. Life Sci. 2022. V. 79. № 1. P. 31.
  33. Mori M., Murata Y., Tsuchihashi M. et al. Continuous psychosocial stress stimulates BMP signaling in dorsal hippocampus concomitant with anxiety-like behavior associated with differential modulation of cell proliferation and neurogenesis // Behav. Brain Res. 2020. V. 392. Р. 112711.
  34. Kageyama K., Nemoto T. Molecular Mechanisms Underlying Stress Response and Resilience // Int. J. Mol. Sci. 2022. V. 23. № 16. Р. 9007.
  35. Zinchuk M.S., Guekht A.B., Druzhkova T.A. et al. Glial cell line-derived neurotrophic factor (GDNF) in blood serum and lacrimal fluid of patients with a current depressive episode // J. Affect. Disord. 2022. V. 318. Р. 409.
  36. Liu X., Li P., Ma X. et al. Association between plasma levels of BDNF and GDNF and the diagnosis, treatment response in first-episode MDD // J. Affect. Disord. 2022. V. 315. Р. 190.
  37. Bilgiç A., Çelikkol Sadıç Ç., Kılınç İ., Akça Ö.F. Exploring the association between depression, suicidality and serum neurotrophin levels in adolescents // Int. J. Psychiatry Clin. Pract. 2020. V. 24. № 2. Р. 143.
  38. Moreira F.P., Wiener C.D., Jansen K. et al. Serum GDNF levels and anxiety disorders in a population-based study of young adults // Clin. Chim. Acta. 2018. V. 485. Р. 21.
  39. Castrén E., Monteggia L.M. Neurotrophic factor of the brain, signaling depression and antidepressant action // Biol. Psychiatry. 2021. V. 90. № 2. Р. 128.
  40. Lyubin G.S. [Depression and antidepressants] // Meditsinskie Novosti. 2019. № 8. Р. 8.
  41. Rudnitskaya E.A., Kolosova N.G., Stefanova N.A. [Brain neurotrophic supplementation in ontogenesis and during development of neurodegenerative diseases] // Vestnik Moskovskogo Universiteta. Seriya 16. Biologiya. 2016. № 4. Р. 72.
  42. Jia C., Brown R.W., Malone H.M. et al. Ciliary neurotrophic factor is a key sex-specific regulator of depressive-like behavior in mice // Psychoneuroendocrinology. 2019. V. 100. Р. 96.
  43. Shpak A.A., Guekht A.B., Druzhkova T.A. et al. Brain-derived neurotrophic factor and ciliary neurotrophic factor in patients with depression // Neurochem. J. 2020. V. 14. № 2. Р. 239.
  44. Kin K., Yasuhara T., Kameda M. et al. Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats // Mol. Psychiatry. 2020. V. 25. № 6. Р. 1202.
  45. Roe C. Unwrapping Neurotrophic Cytokines and Histone Modification // Cell. Mol. Neurobiol. 2017. V. 37. № 1. P. 1.
  46. Takahashi K., Kurokawa K., Hong L. et al. Antidepressant effects of Enterococcus faecalis 2001 through the regulation of prefrontal cortical myelination via the enhancement of CREB/BDNF and NF-B p65/LIF/STAT3 pathways in olfactory bulbectomized mice // J. Psychiatr. Res. 2022. V. 148. P. 137.
  47. Liu J., Wang Y.H., Li W. et al. Structural and functional damage to the hippocampal neurovascular unit in diabetes-related depression // Neural. Regen. Res. 2019. V. 14. № 2. Р. 289.
  48. Zhao D., Zeng Yu, Zhang T. et al. GLSNN: A multilayer neural network based on global feedback alignment and local plasticity of STDP // Front. Comput. Neurosci. 2020. V. 14. Р. 576841.
  49. Ting E.Y.C., Yang A.C., Tsai S.J. Role of interleukin-6 in depressive disorder // Int. J. Mol. Sci. 2020. V. 21. № 6. Р. 2194.
  50. Hodes G.E., Ménard C., Russo S.J. Integrating Interleukin-6 into depression diagnosis and treatment // Neurobiol. Stress. 2016. V. 4. Р. 15.
  51. Smith K.J., Au B., Ollis L., Schmitz N. The association between C-reactive protein, Interleukin-6 and depression among older adults in the community: a systematic review and meta-analysis // Exp. Gerontol. 2018. V. 102. Р. 109.
  52. Latchman D.S. Cardiotrophin-1: a novel cytokine and its effects in the heart and other tissues // Pharmacol. Ther. 2000. V. 85. № 1. Р. 29.
  53. López-Yoldi M., Moreno-Aliaga M.J., Bustos M. Cardiotrophin-1: a multifaceted cytokine // Cytokine Growth Factor Rev. 2015. V. 26. № 5. Р. 523.
  54. Uemura A., Takizawa T., Ochiai W. et al. Cardiotrophin-like cytokine induces astrocyte differentiation of fetal neuroepithelial cells via activation of STAT3 // Cytokine. 2002. V. 18. № 1. Р. 1.
  55. Peng H., Sola A., Moore J., Wen T. Caspase inhibition by cardiotrophin-1 prevents neuronal death in vivo and in vitro // J. Neurosci. Res. 2010. V. 88. № 5. P. 1041.
  56. Houben E., Hellings N., Broux B. Oncostatin M, an underestimated player in the central nervous system // Front. Immunol. 2019. V. 10. Р. 1165.
  57. Chen S.H., Benveniste E.N. Oncostatin M: a pleiotropic cytokine in the central nervous system // Cytokine Growth Factor Rev. 2004. V. 15. № 5. Р. 379.
  58. Chen M., Zhang L., Jiang Q. Peripheral IGF-1 in bipolar disorder and major depressive disorder: a systematic review and meta-analysis // Ann. Palliat. Med. 2020. V. 9. № 6. Р. 4044.
  59. Yang C., Sui G., Li D. et al. Exogenous IGF-1 alleviates depression-like behavior and hippocampal mitochondrial dysfunction in high-fat diet mice // Physiol. Behav. 2021. V. 229. Р. 113236.
  60. Mueller P.L., Pritchett C.E., Wiechman T.N. et al. Antidepressant-like effects of insulin and IGF-1 are mediated by IGF-1 receptors in the brain // Brain Res. Bull. 2018. V. 143. Р. 27.
  61. Mosiołek A., Mosiołek J., Jakima S. et al. Effects of antidepressant treatment on neurotrophic factors (BDNF and IGF-1) in patients with major depressive disorder (MDD) // J. Clin. Med. 2021. V. 10. № 15. Р. 3377.
  62. Deng Z., Deng S., Zhang M.R., Tang M.M. Fibroblast growth factors in depression // Front. Pharmacol. 2019. V. 10. Р. 60.
  63. Li A., Tian J., Yang J. et al. Expression of fibroblast growth factor 9 and its receptors in the dentate gyrus of hippocampus in poststroke depression rats // Neuroreport. 2021. V. 32. № 4. Р. 321.
  64. Wang X., Zhu L., Hu J. et al. FGF21 attenuated LPS-induced depressive-like behavior via inhibiting the inflammatory pathway // Front. Pharmacol. 2020. V. 11. Р. 154.
  65. Tang M.M., Lin W.J., Pan Y.Q., Li Y.C. Fibroblast growth factor 2 modulates hippocampal microglia activation in a neuroinflammation induced model of depression // Front. Cell. Neurosci. 2018. V. 12. Р. 255.
  66. Hashioka S. Glia and Glial Growth Factors as New Therapeutic Targets in Neuropsychiatric Disorders // CNS Neurol. Disord. Drug Targets. 2020. V. 19. № 7. Р. 480.
  67. Wang X.Q., Li W.H., Tang Y.H. et al. The correlation between adiponectin and FGF9 in depression disorder // Brain Res. 2020. V. 1729. Р. 146596.
  68. Guo J., Wang J., Sun W., Liu X. The advances of post-stroke depression: 2021 update // J. Neurol. 2022. V. 269. № 3. P. 1236.
  69. Chang H.H., Chen P.S., Cheng Y.W. et al. FGF21 is associated with metabolic effects and treatment response in depressed bipolar II disorder patients treated with valproate // Int. J. Neuropsychopharmacol. 2018. V. 21. № 4. Р. 319.
  70. Williamsa A.J., Yeeb P., Smithc M.C. et al. Deletion of Fibroblast Growth Factor 22 (FGF22) causes a depression-like phenotype in adult mice // Behav. Brain Res. 2016. V. 307. P. 11.
  71. Grigor’ian G.A., Dygalo N.N., Gekht A.B. et al. [Molecular and cellular mechanisms of depression. Role of glucocorticoids, cytokines, neurotransmitters, and trophic factors in genesis of depressive disorders] // Usp. Fiziol. Nauk. 2014. V. 45. № 2. P. 3.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Classification of neurotrophic factors.

Download (398KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies