Double Dissociation of Cognitive Varies under Unilateral Radiation Exposure on the Hippocampus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Although the key position of the hippocampus (HP) in memory processes is not in doubt, the specifics of its participation in cognitive processes are far from being established. At the same time, the role of the HP in differentiating the novelty of impressions is often discussed in the context of adult HP neurogenesis. Radiation exposure to the HP, which inhibits the processes of neurogenesis, can serve as a model for studying this relationship. A homogeneous sample of 28 patients with meningiomas of the chiasmal-sellar area adjacent to the HP was studied. 15 patients were diagnosed with a left-sided location of the tumor and 13 patients with a right-sided one. The two groups were comparable in terms of demographic, clinical and morphometric characteristics. In order to stop the growth of the tumor, the patients underwent radiation therapy (RT), in which the HP on the side of the pathological process was forced to receive a dose comparable to the dose in the tumor. The study using the original technique was carried out before the start of RT, immediately after its completion, 6 and 12 months after the end of RT. Data were obtained on earlier changes in memory characteristics mediated by the right hippocampal region, but at the same time — more pronounced long-term cognitive consequences of ionizing effects on the HP of the left hemisphere.

Full Text

Restricted Access

About the authors

O. A. Krotkova

National Medical Research Center for Neurosurgery named after academician N.N. Burdenko

Author for correspondence.
Email: OKrotkova@nsi.ru
Russian Federation, Moscow

G. V. Danilov

National Medical Research Center for Neurosurgery named after academician N.N. Burdenko

Email: OKrotkova@nsi.ru
Russian Federation, Moscow

M. V. Galkin

National Medical Research Center for Neurosurgery named after academician N.N. Burdenko

Email: OKrotkova@nsi.ru
Russian Federation, Moscow

A. Yu. Kuleva

Institute of Higher Nervous Activity and Neurophysiology of RAS

Email: OKrotkova@nsi.ru
Russian Federation, Moscow

M. Yu. Kaverina

National Medical Research Center for Neurosurgery named after academician N.N. Burdenko

Email: OKrotkova@nsi.ru
Russian Federation, Moscow

E. V. Enikolopova

Moscow State University

Email: OKrotkova@nsi.ru
Russian Federation, Moscow

Yu. V. Strunina

National Medical Research Center for Neurosurgery named after academician N.N. Burdenko

Email: OKrotkova@nsi.ru
Russian Federation, Moscow

G. N. Enikolopov

Stony Brook University

Email: OKrotkova@nsi.ru
United States, New York

References

  1. Penfield W. Memory Deficit Produced by Bilateral Lesions in the Hippocampal Zone // Arch. Neurol. Psychiatry. 1958. V. 79. № 5. P. 475.
  2. Gol A., Faibish G.M. Effects of Human Hippocampal Ablation // J. Neurosurg. 1967. V. 26. № 4. P. 390312.
  3. Damasio A.R., Eslinger P.J., Damasio H. et al. Multimodal Amnesic Syndrome Following Bilateral Temporal and Basal Forebrain Damage // Arch. Neurol. 1985. V. 42. № 3. P. 252.
  4. Moskovichyute L.I. About the functional role of the left and right hippocampus in mnestic processes / Neuropsychologiya segodnya (Neuropsychology Today) // Ed. Khomska E.D. Мoscow: Moscow State University, 1995. P. 49.
  5. Buklina S.B. Narusheniya vysshikh psikhicheskikh funktsii pri porazhenii glubinnykh i stvolovykh struktur mozga (Disturbance of Higher Mental Functions Due to Damage to the Deep and Stem Brain Structures), Moscow: MEDpress-Inform, 2016. 312 p.
  6. Scoville W.B., Milner B. Loss of recent memory after bilateral hippocampal lesions // J. Neurol. Neurosurg. Psychiatry. 1957. V. 20. № 1. P. 11.
  7. Zhao C., Deng W., Gage F.H. Mechanisms and Functional Implications of Adult Neurogenesis // Cell. 2008. V. 132. № 4. P. 645.
  8. Danielson N.B., Kaifosh P., Zaremba J.D. et al. Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding // Neuron. 2016. V. 90. № 1. P. 101.
  9. Boldrini M., Fulmore C.A., Tartt A.N. et al. Human Hippocampal Neurogenesis Persists throughout Aging // Cell Stem Cell. 2018. V. 22. № 4. P. 589.
  10. Kempermann G., Gage F.H., Aigner L. et al. Human Adult Neurogenesis: Evidence and Remaining Questions // Cell Stem Cell. 2018. V. 23. № 1. P. 25.
  11. Xu L., Guo Y., Wang G. et al. Inhibition of Adult Hippocampal Neurogenesis Plays a Role in Sevoflurane-Induced Cognitive Impairment in Aged Mice Through Brain-Derived Neurotrophic Factor/Tyrosine Receptor Kinase B and Neurotrophin-3/Tropomyosin Receptor Kinase C Pathways // Front. Aging Neurosci. 2022. V. 14. P. 782932.
  12. Toda T., Parylak S.L., Linker S.B., Gage F.H. The role of adult hippocampal neurogenesis in brain health and disease // Mol. Psychiatry. 2019. V. 24. № 1. P. 67.
  13. Moreno-Jiménez E.P., Flor-García M., Terreros-Roncal J. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease // Nat. Med. 2019. V. 25. № 4. P. 554.
  14. Tobin M.K., Musaraca K., Disouky A. et al. Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients // Cell Stem Cell. 2019. V. 24. № 6. P. 974.
  15. Kamil R.J., Jacob A., Ratnanather J.T. et al. Vestibular Function and Hippocampal Volume in the Baltimore Longitudinal Study of Aging (BLSA) // Otol. Neurotol. 2018. V. 39. № 6. P. 765.
  16. Vinogradova O.S. [Gippokamp i pamyat’] (The Hippocampus and Memory). Moscow: Nauka, 1975. 333 p.
  17. Maurer A.P., Nadel L. The Continuity of Context: A Role for the Hippocampus // Trends Cogn. Sci. 2021. V. 25. № 3. P. 187.
  18. Yassa M.A., Lacy J.W., Stark S.M. et al. Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults // Hippocampus. 2011. V. 21. № 9. P. 968.
  19. Tolentino J.C., Pirogovsky E., Luu T. et al. The effect of interference on temporal order memory for random and fixed sequences in nondemented older adults // Learn. Mem. 2012. V. 19. № 6. P. 251.
  20. Yassa M.A., Stark C.E.L. Pattern separation in the hippocampus // Trends Neurosci. 2011. V. 34. № 10. P. 515.
  21. Stark S.M., Kirwan C.B., Stark C.E.L. Mnemonic Similarity Task: A Tool for Assessing Hippocampal Integrity // Trends Cogn. Sci. 2019. V. 23. № 11. P. 938.
  22. Creer D.J., Romberg C., Saksida L.M. et al. Running enhances spatial pattern separation in mice // Proc. Natl. Acad. Sci. U.S.A. 2010. V. 107. № 5. P. 2367.
  23. Rolls ET. The mechanisms for pattern completion and pattern separation in the hippocampus // Front. Syst. Neurosci. 2013. V. 7. P. 74.
  24. Zeidman P. Maguire EA. Anterior hippocampus: The anatomy of perception, imagination and episodic memory // Nat. Rev. Neurosci. 2016. V. 17. № 3. P. 173.
  25. Stark C.E.L., Squire L.R. Functional Magnetic Resonance Imaging (fMRI) Activity in the Hippocampal Region during Recognition Memory // J. Neurosci. 2000. V. 20. № 20. P. 7776.
  26. Bakker A., Kirwan C.B., Miller M., Stark C.E.L. Pattern separation in the human hippocampal CA3 and dentate gyrus // Science. 2008. V. 319. № 5870. P. 1640.
  27. Stark S.M., Yassa M.A., Lacy J.W., Stark C.E.L. A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment // Neuropsychologia. 2013. V. 51. № 12. P. 2442.
  28. Leal S.L., Yassa M.A. Integrating new findings and examining clinical applications of pattern separation // Nat. Neurosci. 2018. V. 21. № 2. P. 163.
  29. Fountain D.M., Soon W.C., Matys T. et al. Volumetric growth rates of meningioma and its correlation with histological diagnosis and clinical outcome: a systematic review // Acta Neurochir. 2017. V. 159. № 3. P. 435.
  30. Alekseeva A., Enikolopova E., Krotkova O. et al. Dynamics of Cognitive Functions in Patients With Parasellar Meningiomas Undergoing Radiotherapy / The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science», Ekaterinburg, Russia, 13–16 October, 2017. Dubai: Knowledge E, KnE Life Sciences, 2018. P. 42. doi: 10.18502/kls.v4i8.3261
  31. Rogers L., Barani I., Chamberlain M. et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review // J. Neurosurg. 2015. V. 122. № 1. P. 4.
  32. Chera B.S., Amdur R.J., Patel P., Mendenhall W.M. A Radiation Oncologist’s Guide to Contouring the Hippocampus // Am. J. Clin. Oncol. 2009. V. 32. № 1. P. 20.
  33. Kinsbourne M. Eye and Head Turning Indicates Cerebral Lateralization // Science. 1972. V. 176. № 4034. P. 539.
  34. Kimura D. From ear to brain // Brain Cogn. 2011. V. 76. № 2. P. 214.
  35. de Schotten M.T., Dell’Acqua F., Forkel S.J. et al. A lateralized brain network for visuospatial attention // Nat. Neurosci. 2011. V. 14. № 10. P. 1245.
  36. Krotkova O.A., Kaverina M.Yu., Danilov G.V. Eye tracking and interhemispheric interaction in the spatial attention distribution // Human Physiology. 2018. V. 44. № 2. P. 175.
  37. Fukuda A., Fukuda H., Swanpalmer J. et al. Age-dependent sensitivity of the developing brain to irradiation is correlated with the number and vulnerability of progenitor cells // J. Neurochem. 2005. V. 92. № 3. P. 569.
  38. Hellström N.A.K., Björk‐Eriksson T., Blomgren K., Kuhn H.G. Differential Recovery of Neural Stem Cells in the Subventricular Zone and Dentate Gyrus After Ionizing Radiation // Stem Cells. 2009. V. 27. № 3. P. 634.
  39. Monje M. Cranial radiation therapy and damage to hippocampal neurogenesis // Dev. Disabil. Res. Rev. 2008. V. 14. № 3. P. 238.
  40. Olsson E., Eckerström C., Berg G. et al. Hippocampal volumes in patients exposed to low-dose radiation to the basal brain. A case–control study in long-term survivors from cancer in the head and neck region // Radiat. Oncol. 2012. V. 7. P. 202.
  41. Monje M., Thomason M.E., Rigolo L. et al. Functional and structural differences in the hippocampus associated with memory deficits in adult survivors of acute lymphoblastic leukemia // Pediatr. Blood Cancer. 2013. V. 60. № 2. P. 293.
  42. Mineyeva O.A., Bezriadnov D. V., Kedrov A. V. et al. Radiation Induces Distinct Changes in Defined Subpopulations of Neural Stem and Progenitor Cells in the Adult Hippocampus // Front. Neurosci. 2019. V. 12. P. 1013.
  43. Burghardt N.S., Park E.H., Hen R., Fenton A.A. Adult-born hippocampal neurons promote cognitive flexibility in mice // Hippocampus. 2012. V. 22. № 9. P. 1795.
  44. Clelland C.D., Choi M., Romberg C. et al. A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation // Science. 2009. V. 325. № 5937. P. 210.
  45. Leal S.L., Yassa M.A. Neurocognitive Aging and the Hippocampus across Species // Trends Neurosci. 2015. V. 38. № 12. P. 800.
  46. McAvoy K.M., Scobie K.N., Berger S. et al. Modulating Neuronal Competition Dynamics in the Dentate Gyrus to Rejuvenate Aging Memory Circuits // Neuron. 2016. V. 91. № 6. P. 1356.
  47. Niibori Y., Yu T.-S., Epp J.R. et al. Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region // Nat. Commun. 2012. V. 3. P. 1253.
  48. Sahay A., Scobie K.N., Hill A.S. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation // Nature. 2011. V. 472. № 7344. P. 466.
  49. Tronel S., Belnoue L., Grosjean N. et al. Adult-born neurons are necessary for extended contextual discrimination // Hippocampus. 2012. V. 22. № 2. P. 292.
  50. Seibert T.M., Karunamuni R., Bartsch H. et al. Radiation Dose–Dependent Hippocampal Atrophy Detected With Longitudinal Volumetric Magnetic Resonance Imaging // Int. J. Radiat. Oncol. Biol. Phys. 2017. V. 97. № 2. P. 263.
  51. Gondi V., Tomé W.A., Mehta M.P. Why avoid the hippocampus? A comprehensive review // Radiother. Oncol. 2010. V. 97. № 3. P. 370.
  52. Pereira Dias G., Hollywood R., Bevilaqua M.C. et al. Consequences of cancer treatments on adult hippocampal neurogenesis: implications for cognitive function and depressive symptoms // Neuro Oncol. 2014. V. 16. № 4. P. 476.
  53. Suh J.H. Hippocampal-Avoidance Whole-Brain Radiation Therapy: A New Standard for Patients With Brain Metastases? // J. Clin. Oncol. 2014. V. 32. № 34. P. 3789.
  54. Haldbo-Classen L., Amidi A., Lukacova S. et al. Cognitive impairment following radiation to hippocampus and other brain structures in adults with primary brain tumours // Radiother. Oncol. 2020. V. 148. P. 1.
  55. Ma T.M., Grimm J., McIntyre R. et al. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation // Radiother. Oncol. 2017. V. 125. № 2. P. 234.
  56. Velichkovsky B.M., Krotkova O.A., Kotov A.A. et al. Consciousness in a multilevel architecture: Evidence from the right side of the brain // Conscious. Cogn. 2018. V. 64. P. 227.
  57. Krotkova O.A., Velichkovsky B.M. Interhemispheric differences in thinking after lesions of the higher gnostic parts of the brain / [Komp’yutery, mozg, poznanie: uspekhi kognitivnykh nauk] (Computers, Brain, Cognition: Advances in Cognitive Science) // Eds. Velichkovsky B.M., Solov’ev V.D. Moscow: Nauka, 2008. P. 107.
  58. Velichkovsky B.M., Krotkova O.A., Sharaev M.G., Ushakov V.L. In search of the “I”: Neuropsychology of lateralized thinking meets Dynamic Causal Modeling // Psychology in Russia: State of the Art. 2017. V. 10. № 3. P. 7.
  59. Ezzati A., Katz M.J., Zammit A.R. et al. Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults // Neuropsychologia. 2016. V. 93. Pt. B. P. 380.
  60. Maguire E.A., Gadian D.G., Johnsrude I.S. et al. Navigation-related structural change in the hippocampi of taxi drivers // Proc. Natl. Acad. Sci. U.S.A. 2000. V. 97. № 8. P. 4398.
  61. Brunec I.K., Robin J., Patai E.Z. et al. Cognitive mapping style relates to posterior–anterior hippocampal volume ratio // Hippocampus. 2019. V. 29. № 8. P. 748.
  62. Yoon E.J., Choi J.-S., Kim H. et al. Altered hippocampal volume and functional connectivity in males with Internet gaming disorder comparing to those with alcohol use disorder // Sci. Rep. 2017. V. 7. № 1. P. 5744.
  63. Donos C., Rollo P., Tombridge K. et al. Visual field deficits following laser ablation of the hippocampus // Neurology. 2020. V. 94. № 12. P. 1303.
  64. Reyes A., Holden H.M., Chang Y.-H.A. et al. Impaired spatial pattern separation performance in temporal lobe epilepsy is associated with visuospatial memory deficits and hippocampal volume loss // Neuropsychologia. 2018. V. 111. P. 209.
  65. Boldyreva G.N., Kuleva A.Yu., Sharova E.V. et al. Search for Functional Markers of the Hippocampus Involvement in the Pathological Process // Human Physiology. 2023. V. 49. № 2. P. 155.
  66. Krotkova O.A. [Psychophysical problem and the hemispheric asymmetry]. Vestn. Mosk. Univ. Ser. 14: Psikhol. 2014. № 3. P. 47.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Image of the tumor, hippocampus (GP) and other critical structures in the radiation therapy planning program (LT). A is an example of determining the volume of a tumor, GP and other critical structures on axial tomograms in the mode T1 with contrast enhancement. B is an example of a three-dimensional reconstruction of a tumor and major critical structures.

Download (696KB)
3. Fig. 2. The values of radiation load on the tumor-adjacent (ipsilateral) hippocampus (GP) (black circles) and on the GP of the opposite hemisphere (contralateral) (white circles), presented for its volumes in 10, 30 and 50% in a group of 28 patients with meningiomas of the chiasmal cell region (MHSO).

Download (411KB)
4. Fig. 3. Dynamics of the main indicators in the WUAs Methodology (Eye Tracking–Attention–Memory).

Download (951KB)
5. Table 1.1

Download (50KB)
6. Table 1.2

Download (64KB)
7. Table 1.3

Download (65KB)
8. Table 1.4

Download (50KB)
9. Table 1.5

Download (50KB)
10. Table 1.6

Download (60KB)
11. Table 1.7

Download (58KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies